Rút gọn
\(A=\frac{a^5.a^{-3}.a}{a^2.a^{-4}.a^3}\)
Rút gọn mỗi biểu thức sau:
a) \(\frac{{{a^{\frac{7}{3}}} - {a^{\frac{1}{3}}}}}{{{a^{\frac{4}{3}}} - {a^{\frac{1}{3}}}}} - \frac{{{a^{\frac{5}{3}}} - {a^{ - \frac{1}{3}}}}}{{{a^{\frac{2}{3}}} + {a^{ - \frac{1}{3}}}}}\,\,\,(a > 0;a \ne 1)\)
b) \(\frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^4}}}{{\sqrt[4]{{\sqrt {{a^{12}}{b^6}} }}}}\,\,\,(a > 0;b > 0)\)
rút gọn
P=\(\left(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\right):\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)
\(P=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\left(\sqrt{a}+4\right)}\)
\(=\dfrac{-8\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}\cdot\dfrac{\sqrt{a}+4}{-\left(\sqrt{a}+1\right)}=\dfrac{8}{\sqrt{a}-4}\)
Rút gọn: A = \(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9-4\sqrt{5}}}-\sqrt[3]{a^2}+\sqrt[3]{a}}\)
Rút gọn A=\(\left(\frac{a^3-3}{a^2-2a-3}-\frac{2a-6}{a+1}+\frac{a+3}{5-a}\right):\frac{a^2+8}{a^2-1}\)
rút gọn biểu thức sau
P=(\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\))\(:\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)
P= (\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\)):\(\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)
=\(\left(\frac{3\sqrt{a}\left(\sqrt{a}-4\right)}{a-16}+\frac{\sqrt{a}\left(\sqrt{a}+4\right)}{a-16}-\frac{4a+8}{a-16}\right):\left(\frac{\sqrt{a}-4-2\sqrt{a}-5}{\sqrt{a}-4}\right)\)
= \(\left(\frac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{a-16}\right):\left(\frac{-\sqrt{a}-9}{\sqrt{a}-4}\right)\)
=\(\left(\frac{-8\sqrt{a}-8}{a-16}\right).\left(\frac{\sqrt{a}-4}{-\sqrt{a}-9}\right)=\frac{8\sqrt{a}+8}{\left(\sqrt{a}+4\right).\left(\sqrt{a}+9\right)}=\frac{8\sqrt{a}+8}{a+13\sqrt{a}+36}\)
Rút gọn \(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{a-4}-\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-4}-\frac{4\sqrt{a}-4}{a-4}\)
\(=\frac{a+5\sqrt{a}+6-\left(a-3\sqrt{a}+2\right)-\left(4\sqrt{a}-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{4\sqrt{a}+8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\frac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\frac{4}{\sqrt{a}-2}\)
Rút gọn biểu thức:
\(A=\frac{5\sqrt{a}-3}{\sqrt{a}-2}+\frac{3\sqrt{a}+1}{\sqrt{a}+2}-\frac{a^2+2\sqrt{a}+8}{a-4}\) với \(a\ge0,a\ne4\)
Ai giải giúp mấy bài toán vs
Bài 1:
A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)
B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)
Bài 2 rút gọn biểu thức
A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0
B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)
Bài 3 cho biểu thức
P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)
a)Rút gọn P
b)tìm x để P=\(\text{√}x+\frac{5}{2}\)
bài 4 rút gọn biểu thức
A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)
B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)
Bài 5
A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)
a)rút gọn A
b)tìm gtri x để A= -1/4
AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN
Rút gọn các biểu thức sau \(\left( {a > 0,b > 0} \right)\):
a) \({a^{\frac{1}{3}}}{a^{\frac{1}{2}}}{a^{\frac{7}{6}}}\);
b) \({a^{\frac{2}{3}}}{a^{\frac{1}{4}}}:{a^{\frac{1}{6}}}\);
c) \(\left( {\frac{3}{2}{a^{ - \frac{3}{2}}}{b^{ - \frac{1}{2}}}} \right)\left( { - \frac{1}{3}{a^{\frac{1}{2}}}{b^{\frac{3}{2}}}} \right)\).
a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)
b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)
c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)
\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)