Chứng tỏ :
\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x.\left(x+1\right)}\)
B=\(\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right)\)
a) Rút gọn B
b) Chứng tỏ 0>B>2
Lời giải:
ĐK: $x\geq 0; x\neq 1$
a) \(B=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{(\sqrt{x}-1)(x+1)}\right):\left(\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(x+1)}+\frac{1}{x+1}\right)\)
\(=\frac{x+1-2\sqrt{x}}{(\sqrt{x}-1)(x+1)}:\frac{\sqrt{x}+1}{x+1}=\frac{(\sqrt{x}-1)^2}{(x+1)(\sqrt{x}-1)}.\frac{x+1}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)
Với $B=\frac{\sqrt{x}-1}{\sqrt{x}+1}$ thôi thì $0< B< 2$ là không đúng. Bạn cho thử $x=0,5$ sẽ thấy.
A) Chứng tỏ:\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
B)Tìm cặp số nguyên (x,y) sao cho:
\(\left(x-5\right).\left(x-y+1\right)=-23\)
A) \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}.3+\frac{1}{45}.3\)
\(< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
B) \(\left(x-5\right).\left(x-y+1\right)=-23\)
=> x - 5 = 1; x - y + 1 = -23 hoặc x - 5 = -1; x - y + 1 = 23 hoặc x - 5 = 23; x - y + 1 = -1 hoặc x - 5 = -23; x - y + 1 = 1
+ Với x - 5 = 1; x - y + 1 = -23
=> x = 6; x - y = -22
=> x = 6; y = 28
... Bn tự lm típ
Ủng hộ mk nha ^_-
a) Chứng minh: \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x\left(x+1\right)}\)
b). Tính nhẩm tổng sau: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
Cho B=\(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right)\cdot\frac{x^2-1}{5}\)
Chứng tỏ B>0 với mọi x<>1;-1
1) tìm x biết
a) \(\left(\frac{2}{3}\right)^x=\left(\frac{4}{9}\right)^{50}\)
b) \(\left(\frac{2}{3}-x\right)^2=\frac{1}{36}\)
c)\(\left(x-\frac{1}{2}\right)^{50}-\left(\frac{1}{3}\right)^{20}\times\left(-\frac{1}{9}\right)^{15}\)
2) chứng tỏ
\(\left(74^{m+1}+74^m\right)⋮25\)
a) \(\left(\frac{2}{3}\right)^x=\left(\frac{4}{9}\right)^{50}\)
\(\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2^2}{3^2}\right)^{50}\)
\(\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^{100}\)
\(\Rightarrow x=100\)
Vậy x = 100
b) \(\left(\frac{2}{3}-x\right)^2=\frac{1}{36}\)
\(\Rightarrow\left(\frac{2}{3}-x\right)^2=\left(\frac{1}{6}\right)^2\)
\(\Rightarrow\frac{2}{3}-x=\frac{1}{6}\)
\(\Rightarrow x=\frac{2}{3}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
2)
Ta có:
\(74^{m+1}+74^m=74^m.74^1+74^m=74^m.\left(74+1\right)=74^m.75⋮25\)
( vì \(75⋮25\) )
\(\Rightarrowđpcm\)
\(B=\left(\frac{2x+1}{x-1}+\frac{8}{^{x^2-1}}-\frac{x-1}{x+1}\right).\frac{x^2-1}{5}\)
rút gọn B và chứng tỏ B>0 với mọi x khác +-1
a) chứng minh: \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x\left(x+1\right)}\)
b) tính nhẩm tổng sau:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
a,\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b,Áp dụng câu a:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
a) Chứng minh: \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x\left(x+1\right)}\)
b) Đố: Đố bạn tính nhẩm được tổng sau:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
a)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) S =\(\frac{1}{x}-\frac{1}{x+5}+\frac{1}{x+5}=\frac{1}{x}\)
Cho đa thức \(M=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\) với x,y,z \(\ne0\)
Chứng tỏ rằng x-y-z=0 Thì M=-1
Ta có :
x - y - z = 0
\(\Rightarrow\hept{\begin{cases}x=y+z\\y=x-z\\-z=y-x\end{cases}}\)
\(M=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(M=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay các x , y, z vào đẳng thức M , ta sẽ có :
\(M=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-\frac{z}{z}=-1\)
=> Với x - y - z = 0 (\(\forall x,y,z\ne0\)) thì M = -1