Tam giác ABC nhọn có BC=12cm, đường cao AH=8cm. Hình vuông EFIK với E thuộc AB, F thuộc AC; I,K thuộc BC.
a) Tính diện tích tam giác ABC.
b) Tính cạnh hình vuông.
c) Tính diện tích tứ giác EFCB
Tam giác ABC nhọn có BC=12cm, đường cao AH=8cm. Hình vuông EFIK với E thuộc AB, F thuộc AC; I,K thuộc BC.
a) Tính diện tích tam giác ABC.
b) Tính cạnh hình vuông.
c) Tính diện tích tứ giác EFCB
cho tam giác ABC nhọn có BC= 12cm, đường cao AH= 8cm. Vẽ hình vuông EFIK có E thuộc AB, F thuộc BC
a, Tính diện tích tam giác ABC
b, Tính cạnh hình vuông EFIK
c, Tính diện tích EFCB
cho tam giác nhon ABC có BC= 12cm, đường cao AH= 8cm. Hình vuông EFIk có E thuộc AB, F thuộc ACV, I và K thuộc BC
a) tính diện tích tam giác ABC
b) tính cạnh của hình vuông
c) tính diện tích hình thang EFCB
Cho tam giác nhọn ABC có BC=12 cm, AH=8cm. Hình vuông EFIK có E thuộc AB, F thuộc AC. I và K thuộc BC
a) Tính diện tích ABC
b) Tính cạnh hình vuông
c) Tính diện tích hình thang EFCD
Cho tam giác nhọn ABC có BC=12cm, đường cao AH=6cm. Hình vuông DEMN có D thuộc cạnh AB, E thuộc cạnh AC, M và N thuộc cạnh BC. Tính Sdemn
cho tam giác abc vuông tại a có ah là đường cao tính bc,ch abc (góc làm tròn đến độ ) với ab=6cm ab=8cm vẽ h vuông góc với ab e thuộc ab hf vuông góc với ac f thuộc ac chứng minh ae nhân ab bằng af nhân ac từ đó suy ra tam giác aef ~ tam giác acb gọi k là trung điểm của bc chứng minh ak vuông góc với ef
a: BC=căn 6^2+8^2=10cm
BH=AB^2/BC=3,6cm
CH=10-3,6=6,4cm
sin ABC=AC/BC=4/5
=>góc ABC=53 độ
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
c: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
góc KAC+góc AFE
=góc AHE+góc KCA
=góc ABC+góc ACB=90 độ
=>AK vuông góc EF
CHo tam giác ABC có ba góc nhọn, AB = 12cm, AC = 15cm, BC = 18 cm đường cao AH ( H thuộc BC ). Vẽ HD vuông góc với AB tại D, HE vuông góc với AC tại E. Vẽ AK là tia phân giác của góc A ( K thuộc BC ). Tính độ dài AK.
Cho tam giác ABC vuông tại A có AB=9cm, AC=12cm, đường cao AH, tia phân giác góc A cắt BC tại D
a) Tính BC, CD, chiều cao AH của tam giác ABC
b) Lấy điểm E sao cho tứ giác ADCE là hình bình hành. Kẻ EM ^AC (M thuộc AC), AN vuông góc với CE ( N thuộc tia CE). Cm: tam giác HAC đồng dạng tam giác MEA
c) Chứng minh: CD.CH+CE.CN=AC2
a: BC=căn 9^2+12^2=15cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
AH=9*12/15=108/15=7,2cm
b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có
góc HCA=góc MAE
=>ΔHAC đồng dạng với ΔMEA
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm a) Tính BC,AH, góc B,góc C b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB=BC/2
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)
c: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABC}\)
\(\widehat{AFE}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>FE vuông góc AM tại K
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(HA^2=AE\cdot AB\)
=>\(AE\cdot6=4,8^2\)
=>\(AE=3,84\left(cm\right)\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)
Xét ΔAEF vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)
=>AK=2,304(cm)