CMR nếu a^2=bc (với a#b và a#c) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
CMR : nếu a^2 + b^2 +c^2 = ab +ac +bc thì a=b=c
giúp mình với!!!
Ta có đăng thức <=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a=b=c(ĐPCM)
^_^
Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=> a=b=c (đpcm)
Dễ mà. bạn học bđt cosi chưa
Nếu rồi thì ta có a^2 + b^2 >= 2ba (1); b^2 +c^2 >=2bc(2) ; c^2+a^2>=2ac(3) tất nhiên (1) , (2) và (3) xảy ra dấu bằng <=> a = b; b = c và c =a
(1)+(2)+(3) ta có 2a^2+2b^2+2c^2>= 2ab+2bc+2ca => a^2 + b^2+c^2 >= ab + bc +ca. dấu = xảy ra <=> a = b = c
=> đpcm
Cho tam giác ABC, M là trung điểm của BC
CMR: a, Nếu AM=BC/2 thì góc A=90o
b, Nếu góc A=90o thì AM=BC/2
cho tam giác ABC ,M là trung điểm của BC .CMR nếu góc A = 90 độ thì AM= 1/2 BC
b, CMR nếu AM=1/2 BC thì góc A =90 ĐỘ
MK ĐANG CẦN GẤP GIÚP MK NHA
Cho tam giác ABC, M là trung điểm của BC. CMR:
a,Nếu AM=BC\2 thì góc A =90°
b,Nếu góc A=90° thì AM=BC\2
Cho tam giác ABC , M là trung điểm của BC . CMR :
a) Nếu AM = BC : 2 thì góc A = 90 độ
b) Nếu AM > BC : 2 thì góc A < 90 độ
c) Nếu AM < BC : 2 thì góc A > 90 độ
Dễ dàng chỉ ra được các kết luận trên nhờ quan hệ giữa góc và cạnh đối diện trong tam giác.
Ta có :
a) AM = BC/2 = BM
Vậy tam giác ABM cân tại M. Vậy thì \(\widehat{B}=\widehat{A_1}\)
Tương tự \(\widehat{B}=\widehat{A_2}\Rightarrow\widehat{A}=\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=90^o\)
b) AM > BM thì \(\widehat{B}>\widehat{A_1};\widehat{C}>\widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}>\widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}< 90^o\)
c) AM < BM thì \(\widehat{B}< \widehat{A_1};\widehat{C}< \widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}< \widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}>90^o\)
1.CMR nếu ở miền trong tam giác ABC có điểm D sao cho AD=AB thì AB < AC
2 cho tam giác ABC vuông tại A (AB<AC) .Vẽ AH vuông góc với BC (H thuộc BC). CMR AB+AC<AH+BC
1.
Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC.
Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)
Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)
(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)
Mà \(\widehat{ADB}=\widehat{ABD}\)
=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)
=> AC>AB
Xét tam giác ABC vuông tại A
Theo BĐT tam giác: \(AB< AC+BC\)
Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)
\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)
Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)
Hay \(AB+AC< AH+2CH+BH+AC\)
Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)
Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)
Hay \(AB+AC< 2AH+2CH+BC\)
Tới đây bí rồi.
CMR: nếu a^2+b^2+c^2 = |ab+ac+bc| thì a=b=c
CMR nếu a2=bc (với a\(\ne\)b và a\(\ne\)c)thì\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Cho ΔABC, M là trung điểm của BC. CMR:
a) Nếu góc A = 90 độ thì MA = 1/2.BC
b) Nếu góc A > 90 độ thì MA < 1/2.BC
c) Nếu góc A < 90 độ thì MA > 1/2.BC
a: Ta có: ΔABC vuông tại A
ma AM là đường trung tuyến
nên AM=1/2BC(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
b: Tham khảo: