Ta có: \(a^2=bc\)
=> \(bc-a^2=a^2-bc\)
<=> \(bc-a^2+ac-ab=a^2-bc+ac-ab\)
<=> \(\left(ac-a^2\right)+\left(bc-ab\right)=\left(a^2-ab\right)+\left(ac-bc\right)\)
<=> \(a\left(c-a\right)+b\left(c-a\right)=a\left(a-b\right)+c\left(a-b\right)\)
<=> \(\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\)
<=> \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)(đpcm)