Chứng minh rằng :
\(2^{15}-1\) chia hết cho 11 . 31 . 61
Cmr:20^15-1 chia hết cho (11*31*61)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
Chứng minh rằng : \(27^{20}+3^{61}+9^{31}\) chia hết cho 13
Ta có: \(27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}.\left(1+3+3^2\right)\)
\(=3^{60}.13\)
Vì \(13⋮13\) nên \(3^{60}.13⋮13.\)
\(\Rightarrow27^{20}+3^{61}+9^{31}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!
Chứng minh rằng : \(\left(5^{61}+25^{31}+125^{21}\right)\)chia hết cho 31
\(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}\)
\(=5^{61}\left(1+5+5^2\right)=5^{61}.31\)
Chia het cho 31
Cho biểu thức
B=5+5 mũ 1 +5 mũ 2 +........+5 mũ 30
Chứng minh rằng : b chia hết 6; b chia hết 31
C= 1+3+3 mũ 2+ ........+ 3 mũ 11 . Chứng minh rằng : c chia hết cho 13; c chia hết cho 40
Chứng minh rằng \(27^{20}+3^{61}+9^{31}\)chia hết cho 13
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
Chứng minh rằng 16^5-2^15 chia hết cho 31
\(16^5-2^{15}=\left(2^4\right)^{^5}-2^{15}=2^{20}-2^{15}=2^{15}\left(2^5-1\right)=2^{15}.31⋮31\)
Vậy ...........
giải giúp mình bài này với:
Chứng minh rằng : 661+2531+12531 chia hết cho 31