1. Cho S = \(3^0+3^2+3^3+...+3^{2002}\)
a) Tính S
b) CMR S \(⋮\) 7
2. Cho Q = \(5^{ }+5^2+..+5^{2006}\)
CMR: Q \(⋮\)7
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
Cho S=\(^{3^{0^{ }}+3^{2^{ }}+3^4+3^6+.....+3^{2002}}\)
a, Tính S
b,CMR S\(⋮\)7
a, \(S=3^0+3^2+3^4+....+3^{2002}\)
\(3S=3+3^3+....+3^{2003}\)
\(2S=3^{2003}-1\)
b, \(S=\left(3^0+3^2+3^4\right)+\left(3^4+3^6+3^8\right)+...+\left(3^{2000}+3^{1998}+3^{2002}\right)⋮7\)
=> (đpcm)
1. Cho S =\(3^0+3^2+3^3+...+3^{2002}\)
a) Tính S
b) CMR S ⋮ 7
2. Cho Q = \(5+5^2+..+5^{2006}\)
CMR: Q ⋮7
Help me!!
Sorry Mình sửa lại câu 2:
2. Cho Q = \(5+5^2+..+5^{2006}\)
CMR: Q ⋮ 126
Câu 1 :
S=30+...+32002
=> 3S = 31+32+...+32003
=> 3S-S=2S = (31+32+...+32003)-(30+...+32002)
=> 2S = 32003-30
cho S=3^0+3^2+3^3+3^4+3^6+.....+3^2002 CMR S chia hết cho 5 giúp mình với
Cho S = \(\left(3^0+3^2+3^4+3^6+........+3^{2002}\right)\)
Cmr : S chia hết cho 7
\(s=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+.......+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=\left(3^0+3^2+3^4\right)\left(1+3^6+....+3^{1998}\right)\)
\(=91\left(1+3^6+...+3^{1998}\right)\)
Vì 91 chia hết cho 7
=> S chia hết cho 7 ( đpcm )
Ai t mik thì nói nha mik sẽ T lại
S=5+5^2+5^3+.......+5^2006
a) Tính S
b) CMR S \(⋮\) 126
S = 5 + 52 + 53 + ....... + 52006
a) Tính S
S = 5 + 52 + 53 + ....... + 52006
5S = 5(5 + 52 + 53 + ....... + 52006)
5S = 52 + 53 + 54 + ....... + 52007
4S = 5S - S
4S = (52 + 53 + 54 + ....... + 52007) - (5 + 52 + 53 + ....... + 52006)
4S = 52007 - 5
S = 4S : 4
S = (52007 - 5) : 4
b) CMR S ⋮ 126
S = 5 + 52 + 53 + ....... + 52006
S = (5 + 54) + (52 + 55) + .... + (52003 + 52006)
S = 5(1 + 53) + 52(1 + 53) + .... + 52003(1 + 53)
S = 5.126 + 52.126 + .... + 52003.126
S = 126(5 + 52 + .... + 52003) ⋮ 126
S ⋮ 126
Cho S=5+52+53+...+52006
a, Tính S
b, CMR S chia hết cho 126
a, S=5 + 52 + 53 +...+ 52006
5S= 52 + 53 + 54 +... + 52007
5S-S= 52 + 53 + 54 +... + 52007 - ( 5 + 52 + 53 +...+ 52006 )
4S = 52007 - 5
S =(52007 - 5):4
cho S = 30 + 32+ 34+... + 32002
a. Tính S
b. CMR : S chia hết cho 7
Bài làm
a) S = \(3^0\)+ \(3^2\)+ \(3^4\)+ ......+ \(3^{2002}\)
\(3^2\)S = \(3^2\) + \(3^4\)+ \(3^6\)+ ..... + \(3^{2004}\)
\(3^2\)S - S = \(3^{2004}\) - \(3^0\)
9 . S - S = \(3^{2004}\) - \(3^0\)
8 . S = \(3^{2004}\) - \(3^0\)
S = \(\frac{3^{2004}-3^0}{8}\)
a. S = 30 + 32 + 34 + ... + 32002
32S = 32( 30 + 32 + 34 + ... + 32002 )
9S = 32 + 34 + 36... + 32004
9S - S = (32 + 34 + 36... + 32004 ) - ( 30 + 32 + 34 + ... + 32002)
8S = 32004 - 1
S = (32004 - 1) : 8
b. Có S = 30 + 32 + 34 + ... + 32002 có 1002 số hạng
= ( 30 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 ) có 334 nhóm.
= 91 + 36 (30 + 32 + 34 ) + ... + 31998( 30 + 32 + 34 )
= 91 + 36 . 91 + ... + 31998 . 91
=91 ( 1 + 36 + ... + 31998 ) = 7 . 13 . ( 1 + 36 + ... + 31998 )
Vì ( 1 + 36 + ... + 31998 ) \(\in\)N
\(\Rightarrow\)7 . 13 . ( 1 + 36 + ... + 31998 ) \(⋮\)7
Hay S \(⋮\)7 ( đpcm )
a. S=30+32+34+...+32002
3S=3(30+32+34+...+32002)
3S=3.30+3.32+3.34+...+3.32002
3S=31+33+35+...+32003
3S-S=(31+33+35+...+32003)-(30+32+34+...+32002)
2S=32003-1
S=(32003-1):2
phần b mình chịu
tính tổng đại số sau
a] S=1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
b] S=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
a)S= (1-2-3+4)+(5-6-7+8)+....+(2001-2002-2003+2004)=0+0+0+..+000000000000= 0
b)Tương tự a nhưng nhóm 5 sô