Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Việt Anh
Xem chi tiết
T.Anh 2K7(siêu quậy)(тoá...
17 tháng 2 2020 lúc 21:39

\(\Rightarrow A-B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4026}\)

\(B>1+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4026}=\frac{1}{2}+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4026}\right)=\frac{1}{2}+\left(A-B\right)\)

\(\Rightarrow B>\frac{1}{2}+\left(A-B\right)\left(1\right)\)

\(A-B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4026}< \frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{2013}{2}\)

\(\Rightarrow A-B< \frac{2013}{2}\Rightarrow\frac{A-B}{2013}< \frac{1}{2}\left(2\right)\)

Cộng (1) với (2)

\(\Rightarrow\frac{A-B}{2013}+\frac{1}{2}+\left(A-B\right)< \frac{1}{2}+B\Rightarrow\frac{A-B}{2013}+\left(A-B\right)< B\Rightarrow\frac{2014\left(A-B\right)}{2013}< B\Rightarrow\frac{A-B}{B}< \frac{2013}{2014}\)

\(\Rightarrow\frac{A-B}{B}+1< \frac{2013}{2014}+1\Rightarrow\frac{A}{B}< 1\frac{2013}{2014}\left(đpcm\right)\)

Khách vãng lai đã xóa
Dr. Lemon
Xem chi tiết
tran trung hieu
Xem chi tiết
Lan Hương Nguyễn Thị [En...
30 tháng 11 2019 lúc 13:20

@tran trung hieu ban lam dc chx

Nguyễn Minh Huy
Xem chi tiết
Nguyễn Tiểu Di
Xem chi tiết
Phạm Đăng Khoa
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:26

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:34

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

Vũ Minh Tâm
Xem chi tiết
OoO Kún Chảnh OoO
24 tháng 1 2016 lúc 12:51

Ax1007x1008=A1= 1007x(1+1/3+...+1/2013)
Bx1007x1008=B1=1008x(1/2+1/4+...+1/2014)
A1-B1=1007x(1-1/2+1/3-1/4+..+1/2013-2/1014) - ( 1/2+1/4+..1/2014)
=1007x(1/2+1/3x4+..1/1007x1008)- (1/2+1/4+..1/2014)
Xet' (1/2+1/4+..1/2014) < (1/2 + 1/2 + .... 1/2) (co' 1007 so' ) = 1007/2
xet' 1007x(1/2 +1/3x4 +... 1/1007x1008 ) > 1007/2 
=> A> B

Nguyễn Mạnh Trung
24 tháng 1 2016 lúc 12:51

\(5753\)

LÊ THÙY LINH
24 tháng 1 2016 lúc 12:55

Có trong google đấy nha

Nguyễn Văn Anh
Xem chi tiết
Hội Những Đứa Con Ghét C...
21 tháng 4 2016 lúc 23:13

Ngu ngờ ngáo !

Nguyen thi ngoc mai
Xem chi tiết
I don
30 tháng 6 2018 lúc 16:39

ta có: \(A=\frac{2014^{2013}+1}{2014^{2013}-1}=\frac{2014^{2013}-1+2}{2014^{2013}-1}=1+\frac{2}{2014^{2013}-1}\)

\(B=\frac{2014^{2013}-1}{2014^{2013}-3}=\frac{2014^{2013}-3+2}{2014^{2013}-3}=1+\frac{2}{2014^{2013}-3}\)

\(\Rightarrow\frac{2}{2014^{2013}-1}< \frac{2}{2014^{2013}-3}\)

\(\Rightarrow1+\frac{2}{2014^{2013}-1}< 1+\frac{2}{2014^{2013}-3}\)

=> A < B