Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jennie Kim
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2017 lúc 8:06

Vì ABCD là hình thang cân nên AD = BC = 3.

Gọi là đường thẳng qua C và song song với AB.

Gọi (S) là mặt cầu tâm A bán kính R = 3. Điểm D cần tìm là giao điểm của ∆ và (S).

Đường thẳng có vectơ chỉ phương A B → - 2 ; 6 ; 3 nên có phương trình:

x = 2 - 2 t y = 3 + 6 t z = 3 + 3 t

Phương trình mặt cầu

S : x - 3 2 + y + 1 2 + z + 2 2 = 9 .

Tọa độ điểm D là nghiệm của phương trình

- 2 t - 1 2 + 6 t + 4 2 + 3 t + 5 2 = 9 ⇔ 49 t 2 + 82 t + 33 = 0 ⇔ t = - 1 t = - 33 49 .

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2018 lúc 16:39

Tô Thu Huyền
Xem chi tiết
Hải Hằng
Xem chi tiết
trần văn duy
25 tháng 1 2016 lúc 20:20

bạn vẽ hình ra là thấy mà

Hải Hằng
25 tháng 1 2016 lúc 22:01

Bạn giải chi tiết cho mình đc không, mình chưa chứng minh đc 

aoki reka
26 tháng 1 2016 lúc 11:02

không có hình làm sao giải

Lê Anh Ngọc
Xem chi tiết
Angry Birds
Xem chi tiết
Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 13:32

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

Đặng Thị Phương Anh
Xem chi tiết
Thiên An
15 tháng 4 2016 lúc 22:19

Gọi \(\overrightarrow{n}=\left(a,b\right)\) là vectơ pháp tuyến của CD (\(a^2+b^2\ne0\)

Ta có phương trình CD : \(ax+by+a+b=0\)

\(S_{BCD}=S_{ACD}=8\Rightarrow d\left(A;CD\right)=\frac{2.S}{CD}=2\Rightarrow d\left(M.CD\right)=1\)

\(\Rightarrow\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=1\Leftrightarrow3a^2-4ab=0\)\(\rightarrow\begin{cases}a=0;b=1\\a=4;b=3\end{cases}\)\(\rightarrow\begin{cases}CD:y+1=0\\CD:4x+3y+7=0\end{cases}\)

Với \(CD:y+1=0\rightarrow D\left(d;-1\right);CD^2=4.AB^2=64\Leftrightarrow\begin{cases}d=7\\d=-9:L\end{cases}\)

\(D\left(7;-1\right);\overrightarrow{AB}=\frac{1}{2}\overrightarrow{DC}=\left(-4;0\right)\rightarrow B\left(-9;-3\right)\)

Với \(CD:4x+3y+7=0\rightarrow D\left(d;\frac{-4d-7}{3}\right)\rightarrow CD^2=\frac{25\left(d+1\right)^2}{9}=64\) (loại)