viết phương trình mặt phẳng(P)đi qua điểm M(1,2,3) và vuông góc với trục hoành
Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và vuông góc với trục hoành :
Vì mặt phẳng (P) vuông góc với Ox nên (P) nhận vecto chỉ phương đơn vị \(\overrightarrow{i}=\left(1;0;0\right)\) của Ox làm vecto pháp tuyến. Do đó \(\left(P\right)\) có phương trình :
\(1.\left(x-1\right)+0\left(y-2\right)+0\left(z-3\right)=0\)
hay \(x-1=0\)
Viết phương trình của mặt phẳng ( β ) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng ( α ): 2x – y + 3z + 4 = 0
Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):
2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là: j → = (0; 1; 0) và n α → = (2; −1; 3)
Suy ra ( β ) có vecto pháp tuyến là n β → = j → ∧ n α → = (3; 0; −2)
Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: n β → = (3; 0; −2)
Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0
Viết phương trình mặt phẳng (P) đi qua điểm A (0; -1; 2), song song với trục Ox và vuông góc với mặt phẳng (Q) : x + 2y - 2z +1 = 0.
A. (P) : 2y + 2z - 1 = 0
B. (P) : y + z - 1 = 0
C. (P) : y - z + 3 = 0
D. (P) : 2x + z - 2 = 0
Viết phương trình mặt phẳng (P) đi qua điểm A(0; -1; 2), song song với trục Ox và vuông góc với mặt phẳng (Q) : x + 2y - 2z +1 = 0.
trong mặt phẳng hệ tọa độ vuông góc Oxy cho điểm M (-1;1). Viết phương trình đường thẳng đi qua M và tạo với hai trục tọa độ một tam giác vuông cân
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M 8 ; - 2 ; 4 Viết phương trình mặt phẳng đi qua các điểm là hình chiếu vuông góc của điểm M lên các trục tọa độ.
A. x + 4 y + 2 z - 8 = 0
B. x - 4 y + 2 z - 8 = 0
C. x - 4 y + 2 z = 0
D. 8 x - 2 y + 4 z - 76 = 0
Chọn B.
Phương pháp: Kinh nghiệm: Chiếu lên trục, mặt phẳng đặc biệt thì thiếu gì thì cho đấy bằng 0.
Sau đó dùng phương trình mặt phẳng theo đoạn chắn để viết.
Cho mặt phẳng ( P ) : x - y + 2 z - 6 = 0 và điểm M(1;-1;2). Viết phương trình đường thẳng đi qua M và vuông góc với mặt phẳng (P).
A. x - 1 1 = y + 1 2 = z - 2 - 1
B. x - 1 2 = y + 1 1 = z - 2 - 1
C. x - 1 1 = y + 1 - 1 = z - 2 2
D. x - 1 - 1 = y + 1 1 = z - 2 2
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm M(-1;1). Viết phương trình đường thẳng qua M và tạo với hai trục tọa độ một tam giác vuông cân.
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm M(-1;1). Viết phương trình đường thẳng qua M và tạo với hai trục tọa độ một tam giác vuông cân.
gọi Pt đường thảng .....y=ax+b(d)
d đi qua M(-1,1) 1=-a+b⇔b=a+1
gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)
d cắt Oy tại \(B\left(O,b\right)\)
\(\Delta AOB\) vuông cân tại o
\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)
\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)
(do d cắt 2 trục tọa độ nên a,b≠0)
vậy PtT đg thảng d:y=x+2
Gọi pt đường thẳng có dạng \(y=ax+b\)
Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)
\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)
Thay tọa độ M vào phương trình ta được:
\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)