Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
AB // HK
AKI cân
BAK = AIK
AIC = AKC
a) Ta có: AB⊥AC(ΔABC vuông tại A)
HK⊥AC(Gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
b) Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
KH=IH(gt)
AH chung
Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)
Suy ra: AK=AI(hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân)
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuong goc voi AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh : a) AB//IK b) AKI cân )BAK= AIK d) tam giác AIC =AKC
a: Ta có: AB\(\perp\)AC
IK\(\perp\)AC
Do đó: IK//AB
b: Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
AH chung
HK=HI
Do đó: ΔAKH=ΔAIH
Suy ra: AK=AI
Xét ΔAKI có AK=AI
nên ΔAKI cân tại A
c: Ta có: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{HAI}=90^0\)
mà \(\widehat{HAK}=\widehat{HAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
Cho △ABC có AB = 3cm, AC = 4cm, BC = 5cm. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a)∆ABC là tam giác vuông.
b) AB //HK
c) △AKI cân
d) BAK = AIK
e) △AIC = △AKC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
hay ΔABC vuông tại A
b: HK\(\perp\)AC
mà AB\(\perp\)AC
nên HK//AB
c: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
Cho tam giác ABC vuông tại A, từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc với AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK.
Chứng minh:
a) AB // HK
b) Tam giác AKI cân
c) Góc BAK = góc AIK
d) Tam giác AIC = tam giác AKC
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)
Cho tam giác ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a) AB // HK
b) Tam giác AKI cân
c) Góc BAK = góc AIK
d) Tam giác AIC = tam giác AKC
Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh : a) AB//HK b) goc KAH = goc IAH c) AKI cân
cho tam giác ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông AC trên tia Đối của HK lấy điểm I sao cho HI=HK chứng minh
a)AB// Hk
b) Tam giác AKI cân
c) BAK=AIK
d) tam giác AIC=AKC
Cho tam giác ABC vuông tại A.Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc với AC. Trên tia đối của tia HK lấy điểm I sao cho HI=HK. Chứng minh:
a, AB//HK
b, tam giác AKI cân
c, BAK^ = AIK^
d, tam giác AIC = tam giác AKC
Cho tam giác ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh vẽ KH vuông góc với AC. Trên tia đối của tia HK lấy điểm I sao cho HI=HK. Chứng minh
a) AB // HK
b)Tam giiacs AKI can
c) góc BAK=góc AIK
d) Tam giác AIC= tam giác AKC
cho tam giác ABC vuông tại A . từ 1 điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc AC. trên tia đối của tia HK lấy điểm I sao cho HI=HK . chứng minh:
a, AB//HK
b, Tam giác AKI cân
c, góc BAK=góc AIK
d, Tam giác AIC= tam giác AKC