Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B
AB=a, AA'=2a, A'C=3a. Gọi M là trung điểm của đoạn A'C'; I là giao điểm của AM và A'C.
Tính theo a thể tích của khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B
AB=a, AA'=2a, A'C=3a. Gọi M là trung điểm của đoạn A'C'; I là giao điểm của AM và A'C.
Tính theo a thể tích của khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)
Từ I dựng IH AC IH // AA'
lại có AA' (ABC) nên HI (ABC) .
AC//A'B' CI/AI=AC/A'M=1/2
do đó IH/AA'=1/3
V(IABC)=1/3.IH.S(ABC)=1/3.2/3AA'.S(ABC)=2/9V(ABCA'B'C')=2/9.2a.1/2.a.2a=4/9a^3
BC AB và BC AA' BC A'B
A'B==a
=arctan(A'B/BC)
IC/IA'=2/3 IC=2a
S(IBC)=BC.CI.1/2.sin(arctan(A'B/BC))
Từ đó d(A,IBC)=3.V(IBCA)/S(IBC)
Hạ \(IH\perp AC,\left(H\in AC\right)\Rightarrow IH\perp\left(ABC\right)\)
IH là đường cao của tứ diện IABC
Suy ra IH//AA' \(\Rightarrow\frac{IH}{AA'}=\frac{CI}{CA'}=\frac{2}{3}\)
\(\Rightarrow IH=\frac{2}{3}AA'=\frac{4a}{3}\)
\(AC=\sqrt{A'C-A'A^2}=a\sqrt{5;}BC=\sqrt{AC^2-AB^2}=2a\)
Diện tích tam gia ABC : \(S_{\Delta ABC}=\frac{1}{2}.AB.BC=a^2\)
Vậy thể tích của khối tứ diện IABC : \(V=\frac{1}{3}IH.S_{\Delta ABC}=\frac{4a^3}{9}\)
Hạ \(AK\perp A'B\left(K\in A'B\right)\)
Vì \(BC\perp\left(ABB'A\right)\) nên \(AK\perp BC\) suy ra \(AK\perp\left(IBC\right)\)
Khoảng cách từ A đến mặt phẳng )IBC) là AK
\(AK=\frac{2S_{\Delta AA'B}}{A'B}=\frac{AA'.AB}{\sqrt{AA'^2+AB^2}}=\frac{2a\sqrt{5}}{5}\)
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB = a, AA' = 2a. Gọi M là trung điểm của đoạn thẳng A'C', I là giao điểm của AM và A'C. Tính khoảng cách từ điểm A đến mặt phẳng (IBC).
A. 2 5 a 5 .
B. 5 a 5 .
C. 2 3 a 5 .
D. 3 a 5 .
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, AA'= 2a. Gọi M là trung điểm của đoạn thẳng A'C', I là giao điểm của AM và AC'. Tính khoảng cách từ điểm A đến mặt phẳng (IBC).
A . 2 5 a 5
B . 5 a 5
C . 2 3 a 5
D . 3 a 5
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều. Gọi M, N, P lần lượt là trung điểm của BB', A'C', AA' và H là hình chiếu của C lên AB. Hỏi mặt phẳng (MNP) vuông góc với mặt phẳng nào sau đây?? A. (AMP) B. (BCB') C. (C'CH) D. (BMH)
Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = 2a, đường thẳng A'C hợp với đáy một góc 60 ° Tính thể tích khối lăng trụ ABC.A'B'C' là
A . V A B C . A ' B ' C ' = 4 a 3 6 3
B . V A B C . A ' B ' C ' = 4 a 3 2 3
C . V A B C . A ' B ' C ' = 4 a 3 2 9
D . V A B C . A ' B ' C ' = 4 a 3 6
Lăng trụ tam giác ABC.A'B'C' có tam giác ABC vuông tại A; AB = a 3 ; BC = 2a. Biết AA' = A'B = A'C = a 3 . Tính thể tích V của hình lăng trụ.
A. V = a 3 2 3
B. V = a 3 6 3
C. V = a 3 6 2
D. V = a 3 2
Cho lăng trụ đứng ABC.A'B'C', có đáy ABC là tam giác vuông tại A, AB=3a,AC=4a cạnh bên AA'=2a. Tính thể tích của khối lăng trụ ABC.A'B'C'.
A. 12 a 3
B. 4 a 3
C. 3 a 3
D. 6 a 3
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh 2a. Hình chiếu vuông góc của A' lên mp(ABC) là trung điểm của AB, góc giữa A'C và mp(ABC) là 60 độ. Tính cos của góc giữa (A'AC) và (ABC)
Gọi D là trung điểm AB \(\Rightarrow A'D\perp\left(ABC\right)\)
\(\Rightarrow CD\) là hình chiếu vuông góc của A'C lên (ABC)
\(\Rightarrow\widehat{A'CD}\) là góc giữa A'C và (ABC) \(\Rightarrow\widehat{A'CD}=60^0\)
\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)
\(\Rightarrow A'D=CD.tan60^0=3a\)
Từ D kẻ \(DE\perp AC\) (E thuộc AC)
Mà \(A'D\perp\left(ABC\right)\Rightarrow A'D\perp AC\)
\(\Rightarrow AC\perp\left(A'DE\right)\Rightarrow\widehat{AED}\) là góc giữa (A'AC) và (ABC)
\(DE=AD.sinA=a.sin60^0=\dfrac{a\sqrt{3}}{2}\)
\(\Rightarrow A'E=\sqrt{A'D^2+DE^2}=\dfrac{a\sqrt{39}}{2}\)
\(\Rightarrow cos\widehat{A'ED}=\dfrac{DE}{A'E}=\dfrac{\sqrt{13}}{13}\)
Cho lăng trụ đứng ABC.A'B'C' có tam giác ABC vuông cân tại A, AB=AC=2a, AA'=3a. Gọi M là trung điểm AC, N là trung điểm BC. Khoảng cách từ điểm C đến mặt phẳng (A'MN).
A. 2 a 10
B. 3 a 10
C. 6 a 10
D. a 10