Chứng minh rằng với mọi giá trị của tham số m, hàm số
y = x3 – mx2 – 2x + 1
luôn luôn có một điểm cực đại và một điểm cực tiểu.
Chứng minh rằng với mọi giá trị của tham số m, hàm số y = x 3 - m x 2 - 2 x + 1 luôn luôn có một cực đại và một điểm cực tiểu.
TXĐ: D = R
+ y’’ = 6x – 2m.
⇒ là một điểm cực đại của hàm số.
⇒ là một điểm cực tiểu của hàm số.
Vậy hàm số luôn có 1 điểm cực đại và 1 điểm cực tiểu.
Chứng minh rằng với mọi giá trị của tham số m, hàm số y = x3 – mx2 – 2x + 1 luôn luôn có một điểm cực đại và một điểm cực tiểu.
y= x3-mx2-2x+1
y'=3x^2-2mx-2
PT y'=3x^2-2mx-2=0 có delta'=m^2+6>0 với mọi m
nên có 2 nghiệm phân biệt.
vậy hs có 1 cực đại và 1 cực tiểu
Chứng minh rằng với mọi giá trị của tham số \(m\), hàm số \(y=x^3-mx^2-2x+1\)
luôn luôn có một điểm cực đại và một điểm cực tiểu
y’ = 3x2 – 2mx – 2 , ∆’ = m2 + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.
Vậy hàm số luôn có một cực đại và một cực tiểu.
Tìm các giá trị của tham số m để đồ thị hàm số: y = x 3 + m x 2 + 7 x + 3 có đường thẳng đi qua điểm cực đại và điểm cực tiểu vuông góc với đường thẳng có phương trình : y = 3 x ( d )
A. m = ± 45 2
C. m = 2
D. m = ± 47 2
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 + 2 m x + 7
Bấm máy tính
Đường thẳng đi qua 2 điểm cực trị là
Tìm tất cả các giá trị của m để hàm số y = 1 3 x 3 - m x 2 + m + 2 x có cực trị và giá trị của hàm số tại các điểm cực đại, điểm cực tiểu nhận giá trị dương.
A. m ∈ 2 - 2 7 3 ; - 1 ∪ 2 ; 2 + 2 7 3
B. m ∈ 2 - 2 7 3 ; 2 + 2 7 3
C. m ∈ - 1 ; 2
D. m ∈ - ∞ ; - 1 ∪ 2 ; + ∞
Để đồ thị hàm số có 2 điểm cực trị thì
Khi đó, do a = 1 3 > 0 nên hàm số y = 1 3 x 3 - m x 2 + m + 2 x có cực trị và giá trị của hàm số tại các điểm cực đại, điểm cực tiểu nhận giá trị dương . Đồ thị hàm số cắt trục hoành tại 1 điểm duy nhất là x = 0 1 và hai cực trị x 1 ; x 2 x 1 < x 1 thỏa mãn: 0 < x 1 < x 2 2
Ta có:
hoặc là vô nghiệm hoặc là có nghiệm kép x = 0
Kết hợp điều kiện ta có:
m ∈ 2 - 2 7 3 ; - 1 ∪ 2 ; 2 + 2 7 3
Chọn: A
Với giá trị nào của m, đồ thị hàm số y = x 3 – m x 2 + 3 ( m 2 - 1 ) x – m 3 + m có điểm cực đại B, điểm cực tiểu C thỏa mãn OC = 3OB, với O là gốc tọa độ?
A. m = 2 hoặc m = 1 2
B. m = 2
C. m = 1 2
D. m = - 1 2 hoặc m = 1 2
Chọn A
Ta có y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 ) .
Hàm số có hai cực trị => y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> ( 3 m ) 2 - 3 . 3 ( m 2 - 1 ) > 0 <=> 9 > 0 đúng với mọi m. Ta có điểm cực đại là B(m - 1; -2m + 2) và cực tiểu là C(m + 1; -2m - 2)
Tìm tất cả các giá trị của m để đồ thị hàm số y = m 2 - 1 x 4 + m x 2 + m - 2 chỉ có một điểm cực đại và không có điểm cực tiểu
A. - 1 , 5 < m ⩽ 0 .
B. m ⩽ - 1
C. - 1 ⩽ m ⩽ 0
D. - 1 < m < 0 , 5
Tìm tất cả các giá trị của m để đồ thị hàm số y = ( m 2 - 1 ) x 4 + m x 2 + m - 2 chỉ có một điểm cực đại và không có điểm cực tiểu.
A. -1,5 < m ≤ 0
B. m ≤ 1
C. -1 ≤ m ≤ 0
D. -1 < m < 0,5
Chọn C.
Tập xác định: D = ℝ
Xét
Với m = 1, hàm số đã cho trở thành:
Hàm số này đạt cực tiểu tại điểm A(0;-1) nên không thỏa mãn yêu cầu bài toán.
Với m = -1, hàm số đã cho trở thành:
Hàm số này đạt cực đại tại điểm B(0;-3) nên thỏa mãn yêu cầu bài toán.
Xét m ≠ ± 1 ta có
Xét y' = 0
Với m = 0 phương trình y' = 0 có nghiệm bồi 3 và nên hàm số đạt cực đại tại điểm C(0;-1) nên thỏa mãn yêu cầu bào toán.
Với m ≠ 0 hàm số đã cho chỉ có một điểm cực đại và không có điểm cực tiểu khi và chỉ khi
Cho hàm số y = x 3 - 3 x 2 + m x + m , điểm A(1;3) và hai điểm cực đại, cực tiểu thẳng hàng ứng với các giá trị của tham số m bằng
A . m = 5 2
B . m = 2
C . m = 1 2
D . m = 3