Để đồ thị hàm số y = - x 4 - ( m - 3 ) x + 2 m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
A. m ≤ 3
B. m < 3
C. m ≥ 3
D. m > 3
Cho đồ thị hàm số y = a x 3 + b x 2 + c x + d có điểm cực đại là A(-2;2), điểm cực tiểu là B(0;-2). Tìm tất cả các giá trị của m để phương trình a x 3 + b x 2 + c x + d = m có 3 nghiệm phân biệt.
A. m > 2
B. m < - 2
C. - 2 < m < 2
D. m = 2 m = - 2
Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất
A. m = 0
B. m = - 1 2
C. m = 1
D. m = 1 2
Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
A. m = 1 2
B. m = 0
C. m = 1
D. m = - 1 2
Để đồ thị hàm số y = - x 4 - ( m - 3 ) x 2 + m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là:
A. m ≥ 3
B. m > 3.
C. m ≤ 3
D. m < 3
Tìm tất cả các giá trị thực của tham số m để hàm số y = m x 4 + 2 ( m - 1 ) x 2 + 2 có hai điểm cực tiểu và một điểm cực đại
A. m < 0
B. 0 < m < 1
C. m > 2
D. 1 < m < 2
Có tất cả bao nhiêu giá trị nguyên của tham số thực m để đồ thị của hàm số y = x 3 3 − x 2 2 m + 2 + 2 m x + 1 có một điểm cực đại và một điểm cực tiểu đồng thời chúng nằm về cùng một phía so với đường thẳng d : x + y − 1 = 0
A. 3
B. 4
C. 5
D. 6
Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1
Tìm giá trị của m để đồ thị hàm số y = x 3 - 3 x 2 + 2 có điểm cực đại và cực tiểu nằm về hai phía đối với đường tròn
C m : x 2 + y 2 - 2 m x - 4 m y + 5 m 2 - 1 = 0
A. 1 < m < 5 3
B. - 1 < m < 5 3
C. 3 5 < m < 1
D. - 3 5 < m < 1