Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn tố trinh
Xem chi tiết
Ngô Việt Hà
Xem chi tiết
Phan Thị Minh Trí
13 tháng 5 2016 lúc 21:18

* Điều kiện cần : Giả sử hệ đã cho có nghiệm duy nhất là (x;y), khi đó, dễ thấy (y;x) cũng là nghiệm của hệ. Do tính duy nhất suy ra y = x, thay vào (1) ta có :

\(x^2+x^2=m\left(x-1\right)\Leftrightarrow2x^2-mx+m=0\left(3\right)\)

Vì (3) có nghiệm kép nên \(\Delta=m^2-8m=0\Leftrightarrow\left[\begin{array}{nghiempt}m=0\\m=8\end{array}\right.\)

* Điều kiện đủ :

+ Khi m = 0 hệ phương trình đã cho trở thành 

\(\begin{cases}xy+x^2=0\\xy+y^2=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x\left(y+x\right)=0\\y\left(x+y\right)=0\end{cases}\)            (4)

Dễ thấy (1;-1) và (2;-2) là nghiệm (4), vậy m=0 không thỏa mãn đề bài 

+)khi m=8 hệ phương trình đã trở thành \(\begin{cases}xy+x^2=8y-8\left(5\right)\\xy+y^2=8x-8\left(6\right)\end{cases}\)

lấy (5) trừ (6) được 

\(x^2-y^2=8\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+8\right)=0\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=y\\y=-8-x\end{array}\right.\)

khi y=x thay vào (5) ta được \(2x^2-8x+8=0\Leftrightarrow x=2\Rightarrow y=2\)khi y=-8-x, thay vào (5) ta được

\(x\left(-8-x\right)+x^2=8\left(-8-x\right)-8\Leftrightarrow-8x=-64-8x-8\)(VÔ NGHIỆM

kết luận : Hệ phương trình có nghiệm duy nhất khi và chỉ khi m=8

Nguyễn Thị Hà Uyên
Xem chi tiết
Mai Nguyên Khang
24 tháng 3 2016 lúc 11:54

Từ (2) suy ra \(\begin{cases}2-y\ge0\\x=\frac{y^2-4y+4}{y}\end{cases}\)

Lúc đó (1) có \(\frac{y^2-4y+4}{y}-y+m=0\Leftrightarrow m=\frac{4y-4}{y}\Leftrightarrow g\left(m\right)=f\left(y\right)\)

Xét hàm số \(f\left(y\right)=\frac{4y-4}{y}\)

- Miền xác định \(D=\left(-\infty;2\right)\)/\(\left\{0\right\}\)

- Đạo hàm \(f'\left(y\right)=\frac{4}{y^2}>0\) Hàm số đồng biến trên D

- Giới hạn 

                      \(\lim\limits_{y\rightarrow-\infty}f\left(y\right)=4\)

                        \(\lim\limits_{y\rightarrow0^+}f\left(y\right)=-\infty\)

                        \(\lim\limits_{y\rightarrow0^-}f\left(y\right)=+\infty\)

Bảng biến thiên 

x-\(\infty\)                                       0                                                 2
y'                      +                   //                   +
y  4                               +\(\infty\)  //  -\(\infty\)                                       2

 

Mai Nguyên Khang
24 tháng 3 2016 lúc 11:55

Vậy để hệ có nghiệm  : \(m\in\left(-\infty;2\right)\cup\left(4,+\infty\right)\)

Cung Đường Vàng Nắng
Xem chi tiết
trần xuân quyến
Xem chi tiết
Đỗ UYển dương
Xem chi tiết
Hoàng Ngọc Mai
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
12 tháng 3 2020 lúc 22:11

a. Xét hệ : \(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\) <=> \(\hept{\begin{cases}\left(m-1\right)^2x+\left(m-1\right)y=\left(m-1\right)\left(3m-4\right)\\x+\left(m-1\right)y=m\end{cases}}\)

<=> \(\hept{\begin{cases}m\left(m-2\right)x=\left(m-2\right)\left(3m-2\right)\left(1\right)\\x+\left(m-1\right)y=m\end{cases}}\)

Hệ có vô số nghiệm <=> (1) có vô số nghiệm m - 2 = 0 <=> m = 2

Vậy m = 2 thì hệ đã cho có vô số nghiệm

b) 

Xét hệ : \(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\) <=> \(\hept{\begin{cases}\left(m-1\right)^2x+\left(m-1\right)y=\left(m-1\right)\left(3m-4\right)\\x+\left(m-1\right)y=m\end{cases}}\)

<=> \(\hept{\begin{cases}m\left(m-2\right)x=\left(m-2\right)\left(3m-2\right)\left(1\right)\\x+\left(m-1\right)y=m\end{cases}}\)

Hệ đã cho có nghiệm duy nhất <=> (1) có nghiệm  duy nhất m \(\ne\)0 và m \(\ne\)2

Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{\left(m-2\right)\left(3m-2\right)}{m\left(m-2\right)}=\frac{3m-2}{m}\\y=\frac{m-2}{m}\end{cases}}\)

Ta có: x + y = 3 Hay \(\frac{3m-2}{m}+\frac{m-2}{m}=3\)

<=> \(\frac{4m-4}{m}=3\) <=> 4m - 4 = 3m <=> m = 4 (TM)

Vậy m = 4 thì thỏa mãn đề bài

Khách vãng lai đã xóa
Khách vãng lai
Xem chi tiết
Nguyen Phuong
Xem chi tiết