Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen le duy hung
Xem chi tiết
Tran Thi Ha Phuong
Xem chi tiết
Cô Hoàng Huyền
6 tháng 3 2018 lúc 11:26

ĐK: \(x\ne\pm m\)

\(\frac{m}{x-m}+\frac{3m^2-4m+3}{m^2-x^2}=\frac{1}{x+m}\)

\(\Leftrightarrow\frac{m\left(x+m\right)}{x^2-m^2}-\frac{3m^2-4m+3}{x^2-m^2}-\frac{x-m}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{mx+m^2-3m^2+4m-3-x+m}{x^2-m^2}=0\)

\(\Leftrightarrow mx+m^2-3m^2+4m-3-x+m=0\)

\(\Leftrightarrow\left(m-1\right)x-2m^2+5m-3=0\)

Với \(m-1=0\Leftrightarrow m=1\), khi đó \(-2m^2+5m-3=0\)

Vậy thì phương trình có vô số nghiệm khác \(\pm1.\)

Với \(m-1\ne0\Leftrightarrow m\ne1\)

Khi đó phương trình có nghiệm duy nhất \(x=\frac{2m^2-5m+3}{m-1}=2m-3\)

KL:

Với \(m=\pm1,\) phương trình vô số nghiệm khác \(\pm1.\)

Với \(m\ne\pm1,\) phương trình có một nghiệm duy nhất \(x=2m-3\)

Nguyễn Thu Quyên
Xem chi tiết
sakura
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 8:44

a) ĐKXĐ : \(x\ne5;x\ne-m\)

Khử mẫu ta được :

\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)

\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)

\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)

Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)

Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)

Để nghiệm trên là nghiệm của PT ban đầu thì ta có :

\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)

Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu

Khách vãng lai đã xóa
Thanh Tùng DZ
27 tháng 4 2020 lúc 8:49

b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)

PT đã cho đưa về dạng x(m+2) = 2m(4-m)

Nếu m = -2 thì 0x = -24 ( vô nghiệm )

Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)\(x\ne2;x\ne m;x\ne2m\) )

Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)

Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)

Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)

Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)

Khách vãng lai đã xóa
Trường lại
Xem chi tiết
Nguyễn Trọng Nghĩa
Xem chi tiết
Trương Văn Châu
24 tháng 2 2016 lúc 9:54

Điều kiện

\(x+1\ne0\Leftrightarrow x\ne-1\) (*)

Với điều kiện đó

* Nếu \(m=1\) thì phương trình vô nghĩa, do đó vô nghiệm

* Nếu \(m\ne1\) thì 

\(\frac{x-3}{m-1}=\frac{1}{x+1}\Leftrightarrow\left(x-3\right)\left(x+1\right)=m-1\Leftrightarrow f\left(x\right):=x^2-2x-m-2=0\)

Phương trình bậc hai \(x^2-2x-m-2=0\) có \(\Delta'=m+3\). Xét các trường hợp sau :

* Nếu \(\Delta'<0\)   

hay \(m<-3\) 

thì \(x^2-2x-m-2=0\) vô nghiệm

* Nếu \(\Delta'\ge0\)   

hay \(m\ge-3;m\ne1\) 

thì \(x^2-2x-m-2=0\)  có hai nghiệm

\(x_{1;2}=1\pm\sqrt{m+3}\)

Do \(m\ne1\) nên \(f\left(-1\right)=\left(-1\right)^2-2\left(-1\right)-m-2=1-m\ne0\) 

hay là với mọi \(m\ne1\),

phương trình  \(x^2-2x-m-2=0\) 

không có nghiệm \(x=-1\)

Nói cách khác, hai nghiệm \(x_{1;2}\) cùng thỏa mãn điều kiện (*). Ta có kết luận :

- Khi \(m<-3\) hoặc \(m=1\) Phương trình vô nghiệm

-  Khi \(m\ge-3\) hoặc \(m\ne1\) Phương trình co hai nghiệm \(x=1\pm\sqrt{m+3}\)

Ngọc Vĩ
24 tháng 2 2016 lúc 9:39

khó quá, đề có vấn đề k v

nguyen le duy hung
Xem chi tiết
luyen hong dung
15 tháng 6 2018 lúc 16:05

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................

Phạm Hoàng Hải
Xem chi tiết
Nguyễn Ngọc Thảo
Xem chi tiết
Nguyễn Thị Thùy Dương
27 tháng 11 2015 lúc 14:26

\(x\ne2;-m\)

\(x^2-m^2+x^2-4=2\left(x^2+mx-2x-2m\right)\)

\(2\left(m-2\right)x+m^2-4m+4=0\)

\(2\left(2-m\right)x=\left(m-2\right)^2\)

+ Nếu m =2  pt : 0 =0  luôn đúng với mọi x khác 2; -2 )

  => pt có vô số nghiệm ( mọi x khác 2 ; -2)

+ Nếu m  khác 2 => pt  có 1 nghiệm duy nhất 

 x =(2 -m)/2   khác 2  => 2- m khác 4 => m khác -2

               và khác - m  => 2 -m khác -2m  => m khác -1

Vậy m =2  pt có vô số nghiện : x khác 2 ;-2

       m khác 2 ; -2 ; -1 thì pt có nghiệm duy nhất  x =(2-m)/2