Tìm n nguyên để 4n + 3 chia hết cho n - 2
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Bài 1:Cho A=(n-1)(2n-3)-2n(n-3)-4n. Chứng minh A chia hết cho 3 với mọi số nguyên n.
Bài 2: Tìm số nguyên n để B= (n+2)(2n-3)+n(2n-3)+n(n+10) chia hết cho n+3.
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
Tìm n số nguyên để: (4n-3) chia hết cho (3n-2)
Ta có: \(4n-3⋮3n-2\)
\(\Rightarrow3.\left(4n-3\right)⋮3n-2\)
\(\Rightarrow12n-9⋮3n-2\)
\(\Rightarrow\left(12n-8\right)-1⋮3n-2\)
\(\Rightarrow4.\left(3n-2\right)-1⋮3n-2\)
\(\Rightarrow1⋮3n-2\)( Vì \(4.\left(3n-2\right)⋮3n-2\))
\(\Rightarrow3n-2\inƯ\left(1\right)=\left\{-1;1\right\}\)( Vì n là số nguyên )
\(\Rightarrow3n\in\left\{1;3\right\}\)
Vì 3n chia hết cho 3
=> 3n = 3
=> n = 1
Vậy n = 1
Tìm số nguyên n để (n3-4n2+5n-1) chia hết cho (n-3)
\(n^3-4n^2+5n-1=\left(n-3\right)\left(n^2-n+2\right)+5.\)
\(\frac{n^3-4n^2+5n-1}{n-3}=n^2-n+2+\frac{5}{n-3}\)
Để \(n^3-4n^2+5n-1⋮n-3\Rightarrow5⋮n-3\)
\(\Rightarrow n-3=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-2;2;4;8\right\}\)
Tìm số nguyên n sao cho :
a ) 4n - 5 : 2n -1
b) 2- 4n chia hết cho n-1
c) n^2 + 3n + 1 : n + 1
D) 3 n + 5 chia hết cho n -2
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
Tìm số nguyên n để:
a/2n-3 chia hết cho 3n+2
b/4n+1 chia hết cho 2n-3
* Tìm \(n\in N\)để:
a) n + 5 chia hết cho n + 2
b) 3n + 1 chia hết cho 11 - 2n
c) 4n + 7 chia hết cho 2n + 1
d) 6n + 9 chia hết cho 4n + 3
* Cho p và p + 8 đều là số nguyên tố (p > 3)
Hỏi p + 100 là số nguyên tố hay hợp số ?
\(a,\left(n+5\right)⋮\left(n+2\right)\)
\(\left(n+2+3\right)⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)
\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)
b,c,d Tự làm
* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)
Với p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT
Với p = 3k + 2
=> p + 8 = 3k + 10 là SNT
=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .
Vậy p + 100 là hợp số
tìm giá trị nguyên của n để 5n^-4n+3 chia hết cho 5n+1
tìm số nguyên n để \(3^{2n+3}+2^{4n+1}\)chia hết cho 25