giải và biện luận phương trình : m(x - m + 3)= m( x - 2)+6
1)giải phương trình x^2+x+3
2) giải và biện luận phương trình
a)(1-m)x=m^2-1
b)(m^2-5m+6)x=x^2-9
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Giải và biện luận các phương trình sau theo tham số m
a, m(x-m+3)=m(x-2)+6
b, (m+1)x^2 - 2(m-1)x+ m -2=0
a: \(\Leftrightarrow mx-m^2+3m=mx-2m+6\)
\(\Leftrightarrow-m^2+5m-6=0\)
\(\Leftrightarrow\left(m-2\right)\left(m-3\right)=0\)
=>m=2 hoặc ,=3
b: Để phương trình là phương trình bậc hai một ẩn thì m+1<>0
hay m<>-1
\(\text{Δ}=\left(2m-2\right)^2-4\left(m+1\right)\left(m-2\right)\)
\(=4m^2-8m+4-4\left(m^2-m-2\right)\)
\(=4m^2-8m+4-4m^2+4m+8\)
=-4m+12
Để phương trình có hai nghiệm phân biệt thì -4m+12>0
=>-4m>-12
hay m<3
Để phương trình có nghiệm kép thì -4m+12=0
hay m=3
Để phương trình vô nghiệm thì -4m+12<0
hay m>3
giải và biện luận phương trình
a,mx^2-2(m+3)x+m+1=0
b,x^2-4x+m-3=0
Cho phương trình \(mx^2-2\left(m-1\right)x+m-3=0\)
Giải và biện luận phương trình trên.
Với \(m=0\)
\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)
PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)
PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)
Giải và biện luận các phương trình sau:
a) \(\left(m^2-m-6\right)x=m^2-4x+3\)
b) \(\left|m^2x-1\right|=\left|x+m\right|\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình có vô số nghiệm thì \(m-3=0\)
hay m=3
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Giải và biện luận phương trình sau:
(m^2 - 5m + 6)x =m^2 - 9
\(\left(m^2-5m+6\right)x=m^2-9\)
\(\Leftrightarrow\left[m\left(m-2\right)-3\left(m-2\right)\right]x=m^2-3^2\)
\(\Leftrightarrow\left[\left(m-2\right)\left(m-3\right)\right]\times x=\left(m-3\right)\left(m+3\right)\) (1)
* Nếu \(\left(m-2\right)\left(m-3\right)\ne0\Leftrightarrow m\Leftrightarrow2;3\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{\left(m-3\right)\left(m+3\right)}{\left(m-2\right)\left(m-3\right)}\Leftrightarrow\frac{m+3}{m-2}\)
* Nếu m = 2
Phương trình (1) \(\Leftrightarrow0x=-5\)
\(\Rightarrow\) phương trình vô nghiệm
* Nếu m = 3
Phương trình (1) \(\Leftrightarrow0x=0\)
\(\Rightarrow\) phương trình có vô số nghiệm khi m = 3
Vậy khi \(m\ne2;3\) thì phương trình có 1 nghiệm duy nhất \(x=\frac{m+3}{m-2}\)
khi m = 2 thì phương trình vô nghiệm
khi m = 3 thì phương trình có vô số nghiệm
( học tốt nha )
Giải phương trình và biện luận phương trình, cho biết phương trình ẩn x:
m^2*x= m*(x+2)-2
\(m^2x=m\cdot\left(x+2\right)-2\)
\(\Leftrightarrow x\left(m^2-m\right)-2m+2=0\)
*Nếu m=1 <=> m^2 - m = 0 \(\Leftrightarrow-2.1+2=0\left(Đ\right)\)
=> Với m =1 thì pt thỏa mãn với mọi x thuộc R
*Nếu \(m\ne1\Leftrightarrow x=\frac{2m-2}{m^2-m}\)
=> Với \(m\ne1\text{ thì }x=\frac{2m-2}{m^2-m}\)
Vậy ....
giải và biện luận phương trình sau
m.(x-1):2+2(x+n):5=(x+m-6):4
m^3.x -m^2 - 4 =4 m(x - 1)