Tìm x biết:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+.......+\frac{2}{x.\left(x+1\right)}=\frac{206}{208}\)
Tìm số tự nhiên x biết:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{2}{x.\left(x+1\right)}\)
Đặt A=1/3+1/6+1/10+...+2/x*(x+1)
1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)
1/2A=1/6+1/12+1/20+...+1/x*(x+1)
1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)
1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)
1/2A=1/2-1/x+1
A=(1/2-1/x+1):1/2
A=1-2/x+1
Ta có A=1999/2001
Hay 1-2/x+1=1999/2001
2/x+1=1-1999/2001
2/x+1=2/2001
=>x+1=2001
=>x=2000
Cho A = 1/3+1/6+1/10+...+2/x(x+1)
1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2
1/2A= 1/6+1/12+1/20+...+1/x(x+1)
1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)
1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1
1/2A= 1/2-1/x+1
A = (1/2-1/x+1)/1/2
A = 1-2/x+1
Mà A=1999/2001
=> 1-2/x+1= 1999/2001
2/x+1= 1-1999/2001
2/x+1= 2/2001
=>x+1=2001
=>x = 2000
Đặt N=1/10+1/15+1/21+...+2/x*(x+1)
1/2N=1/20+1/30+1/42+...+1/x*(x+1)
1/2N=1/4*5+1/5*6+1/6*7+...+1/x*(x+1)
1/2N=1/4-1/5+1/5-1/6+1/6-1/7+...+1/x-1/x+1
1/2N=1/4-1/x+1
N=(1/4-1/x+1):1/2
N=1/2-2/x+1
Thiếu đề
Tìm x , biết :
a) \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{-1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(a,\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{x-2}{7}=0\Rightarrow x-2=0\Leftrightarrow x=2\)
TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow\frac{-x+3}{5}=0\Rightarrow-x+3=0\Leftrightarrow x=3\)
TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{x+4}{3}=0\Rightarrow x+4=0\Leftrightarrow x=-4\)
\(\Rightarrow x\in\left\{2;3;-4\right\}\)
\(b,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)
\(\Rightarrow\frac{5x+3x-8x}{30}+1=0\)
\(\Rightarrow1=0\)( vô lý )\(\Rightarrow x\in\varnothing\)
a) (1/7x - 2/7)(-1/5x + 3/5)(1/3x + 4/3) = 0
3 trường hợp:
TH1: 1/7x - 2/7 = 0 <=> 1/7x = 0 + 2/7 <=> 1/7x = 2/7 <=> x = 2.7/7 = 2
=> x = 2
TH2: -1/5x + 3/5 = 0 <=> -1/5x = 0 - 3/5 <=> -1/5x = -3/5 <=> x = (-3/5).(-5) = 3
=> x = 3
TH3: 1/3x + 4/3 = 0 <=> 1/3x = 0 - 4/3 <=> 1/3x = -4/3 <=> x = x = 3.(-4/3) = -4
=> x = -4
Vậy: x = 2, 3, -4
b) 1/6x + 1/10x - 4/15x + 1 = 0
<=> 1/6x + 1/10x - 4/15x = 0 - 1
<=> 1/6x + 1/10x - 4/15x = -1
<=> 1/6x.30 + 1/10x.30 - 4/15x.30 = -1.30
<=> 5x + 3x - 8x = -30
<=> 0 = -30
=> không có x thỏa mãn
a)\(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=\)\(0\)
b)\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(-\frac{1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
c)\(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
Tìm x biết:
a, \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Leftrightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Leftrightarrow x=11\)
b,\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Leftrightarrow\frac{1}{7}x-\frac{2}{7}=0\)hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\)hoặc \(\frac{1}{3}x+\frac{4}{3}=0\)
+) \(\frac{1}{7}x-\frac{2}{7}=0\Leftrightarrow\frac{1}{7}x=\frac{2}{7}\Leftrightarrow x=2\)
+)\(-\frac{1}{5}x+\frac{3}{5}=0\Leftrightarrow-\frac{1}{5}x=-\frac{3}{5}\Leftrightarrow x=3\)
+)\(\frac{1}{3}x+\frac{4}{3}=0\Leftrightarrow\frac{1}{3}x=-\frac{4}{3}\Leftrightarrow x=-4\)
c, \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{8}{9}\)
a/ \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Rightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Rightarrow x=11\)
b/ \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{1}{7}x=\frac{2}{7}\Rightarrow x=2\)
hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow-\frac{1}{5}x=-\frac{3}{5}\Rightarrow x=3\)
hoặc \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{1}{3}x=-\frac{4}{3}\Rightarrow x=-4\)
Vậy x = 2, x = 3, x = -4
c/ \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x=\frac{4}{9}\Rightarrow x=\frac{8}{9}\)
Vậy x = 8/9
Tìm x biết:
a/ \(x-\left(\frac{-3}{4}\right)=\frac{-2}{3}-\frac{1}{2}\)
b/ \(\left(3\frac{1}{2}-x\right).1\frac{1}{4}=\frac{15}{16}\)
c/ \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\left(x\in N,x\ge1\right)\)
Tìm x biết :
\(\left[\frac{6:\frac{3}{5}-1\frac{1}{16}.\frac{6}{7}}{4\frac{1}{5}.\frac{10}{11}+5\frac{2}{11}}-\frac{\left(\frac{3}{20}+\frac{1}{2}-\frac{1}{15}\right).\frac{12}{49}}{3\frac{1}{3}+\frac{2}{9}}\right].x=2\frac{23}{96}\)
\(x=\frac{903}{391}\)
Bài này sử dụng MTCT đó bạn!
Tìm X biết:
a) \(\left(\frac{1}{7}.x-\frac{2}{7}\right).\left(-\frac{1}{5}.x+\frac{3}{5}\right).\left(\frac{1}{3}.x+\frac{4}{3}\right)=0\)
b)\(\frac{1}{6}.x+\frac{1}{10}.x-\frac{4}{15}.x+1=0\)
b, \(x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)
\(0+1=0\)
=> x thuoc rong
tìm x,biết:
a)\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
b)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c)\(\left(x+2\right)^2=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
giúp tớ với,huhu
a) \(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
b) \(\frac{x-2018}{2}+\frac{x-2020}{4}=\frac{x-2040}{8}+\frac{x-2030}{14}\)
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
Mình làm tiếp câu b nha !
b, Bài giải
\(\frac{x-2018}{2}+\frac{x-2020}{4}=\frac{x-2040}{8}+\frac{x-2030}{14}\)
\(\left(\frac{x-2018}{2}+1\right)+\left(\frac{x-2020}{4}+1\right)=\left(\frac{x-2040}{8}+1\right)+\left(\frac{x-2030}{14}+1\right)\)
\(\frac{x-2016}{2}+\frac{x-2016}{4}=\frac{x-2032}{8}+\frac{x-2016}{14}\)
\(\left(x-2016\right)\left(\frac{1}{2}+\frac{1}{4}\right)=\frac{x-2016}{8}-2+\frac{x-2016}{14}\)
\(\left(x-2016\right)\cdot\frac{3}{4}=\left(x-2016\right)\left(\frac{1}{8}+\frac{1}{14}\right)-2\)
\(\left(x-2016\right)\cdot\frac{3}{4}=\left(x-2016\right)\cdot\frac{11}{56}-2\)
\(\left(x-2016\right)\cdot\frac{3}{4}-\left(x-2016\right)\cdot\frac{11}{56}=-2\)
\(\left(x-2016\right)\left(\frac{3}{4}-\frac{11}{56}\right)=-2\)
\(\left(x-2016\right)\cdot\frac{31}{56}=-2\)
\(x-2016=-2\text{ : }\frac{31}{56}\)
\(x-2016=-\frac{112}{31}\)
\(x=-\frac{112}{31}+2016\)
\(x=\frac{62384}{31}\)
Tìm x
\(\frac{5}{2}-\left(\frac{3}{2}-2\frac{1}{3}+x\right)=\frac{8}{15}-\left(\frac{1}{4}-\frac{7}{10}\right)\)
\(1\frac{2}{3}-1\frac{3}{5}+x=\frac{2}{5}-\left|\frac{3}{4}-\frac{7}{8}\right|\)
\(2-\left(\frac{2}{3}-3\frac{1}{4}+x\right)=1\left|\frac{1}{6}-\frac{13}{12}\right|\)