Tìm các số x,y,z,biết: x-3\(\sqrt{x}\) = 0
a) Tìm x,y biết : I x+y-2I + I x-y-2I < hoặc = 0
b) Tìm x,y,z biết: z-15y/3 =15x-3z/8 =3y-8x/15 và 2x-y+z =13
c) Tìm số nguyên x, biết: x+ (x+1) +(x+2) +...+ 2017 =0. Biết vế trái là tổng các số nguyên liên tiếp
e) Tìm x biết: x-1/2017 + x-2/2016 - x-3/2015 = x-4/2014
f) Tìm x nguyên để
\(\sqrt{x+1}\) chia hết cho \(\sqrt{x-3}\)
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1
1.Tìm các số x, y, z thỏa mãn đẳng thức\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
2.Tìm x,y,z biết : \(x+y=x\div y=3\left(x-y\right)\)
Cho các số x,y,z >=0 và thỏa x+y+z=1
Tìm MIN của \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
CÁC BẠN AI BIẾT LÀM GIÚP MÌNH VỚI
Tìm các số x, y, z biết
\(x+y+z+35=2\left(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\right)\)
cho các số thực x,y,z thỏa mãn 0<=x,y,z<=3
tìm gtnn của A= \(\sqrt{x^2+y^2-2xy}+\sqrt{Y^2-z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
Tìm x,y,z >0 biết \(\frac{x+y+z}{2}=\sqrt{x}+2\sqrt{y}+3\sqrt{z}-7\)
Từ GT <-> \(x+y+z=2\sqrt{x}+4\sqrt{y}+6\sqrt{z}-14\)
<> \(\left(x-2\sqrt{x}+1\right)\)+ \(\left(y-4\sqrt{y}+4\right)+\left(z-6\sqrt{z}+9\right)\)\(=0\)
<> \(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-2\right)^2+\left(\sqrt{z}-3\right)^2=0\)
vì \(\left(\sqrt{x}-1\right)^2\ge0\forall x>0\).......................................................................
đến đây tự làm tiếp nhé
1. Tìm x, biết:
a) \(9^{x-1}=\frac{1}{9}\)
b) \(\frac{1}{3}:\sqrt{7-3x^2}=\frac{2}{15}\)
2. Tìm các số x,y,z thỏa mãn:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Ta có : \(9^{x-1}=\frac{1}{9}\)
=> \(9^{x-1}=9^{-1}\)
=> x - 1 = -1
=> x = 0
ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi
=>
Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?
2) Ta có : \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Leftrightarrow\sqrt{x^2-\sqrt{2}^2}+\sqrt{y^2+\sqrt{2}^2}+\left|x+y+z\right|=0\)
\(\Leftrightarrow\sqrt{x^2-2}+\sqrt{y^2+2}+\left|x+y+z\right|=0\)
Mà : \(\sqrt{x^2-1}\ge0\); \(\sqrt{y^2+2}\ge0\); \(\left|x+y+z\right|\ge0\)
Nên : \(\sqrt{x^2-1}=0;\sqrt{y^2+2};\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x^2-1=0\\y^2+2=0\\x+y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=1\\y^2=-2\\z=0-x-y\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-\sqrt{2}\\z=0-1+\sqrt{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-\sqrt{2}\\z=-1+\sqrt{2}\end{cases}}}\)
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4