Tìm số nguyên lớn nhất thỏa mãn bất phương trình sau: \(\left(x-2\right)^2-x^2-8x+3\ge0\)
Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là
A. x = 1
B. x = 0
C. x = -1
D. x ≤ 7/12
(x – 2)2 – x2 – 8x + 3 ≥ 0
ó x2 – 4x + 4 – x2 – 8x + 3 ≥ 0
ó -12x + 7 ≥ 0
ó x ≤ 7/12
Vậy nghiệm của bất phương trình là x ≤ 7/12
Nên số nguyên lớn nhất thỏa mãn bất phương trình là x = 0
Đáp án cần chọn là: B
Cho các số x,y ϵ R thỏa mãn hệ bất phương trình sau \(\left\{{}\begin{matrix}x+y\ge3\\x\ge0\\y\ge0\\2x+y\le6\end{matrix}\right.\). Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: F = 5x-6y+2021
a) Cho hai số thực a và b thỏa a-b=2. Tích a và b đạt Min bằng bao nhiêu
b) Có bao nhiêu giá trị nguyên của x thuộc [-2;5] thỏa mãn phương trình x2(x-1) \(\ge0\)
c) Bất pt \(\left|4x+3\right|-\left|x-1\right|< x\) có tập nghiệm S=(a;b). Tính giá trị biểu thức P=2a-4b
d) Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(x^2-2mx+2\left|x-m\right|+2>0\)
Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là
A. x = -1
|
B. x = 0
|
C. x = 1
|
D. x = 2
|
Câu 41
Tập nghiệm của phương trình x + 1 = 5 là
A. 4
|
B. 4 ; - 6.
|
C. -4 ; 6.
|
D. -6
|
Câu 42
Số đo mỗi góc của lục giác đều là :
A. 1500.
|
B. 1080.
|
C. 1000.
|
D. 1200.
|
Câu 43
Phương trình nào sau đây là phương trình bậc nhất một ẩn ?
A. 0x + 25 = 0.
|
B. x + y = 0.
|
C.
|
D. 5x +
|
Câu 44
Tam giác ABC, có A B = 6 cm, AC = 8cm, BC = 10 cm, đường phân giác AD thì số đo độ dài đoạn BD và CD thứ tự bằng :
A. 3 ; 7.
|
B. 4 ; 6.
|
C.
|
D.
|
Câu 45
Trong các khẳng định sau, khẳng định nào không đúng
A. Hình hộp chữ nhật là hình lăng trụ đứng.
|
B. Các cạnh bên của hình lăng trụ đứng bằng nhau.
|
C. Hình lăng trụ đứng có đáy là hình bình hành là hình hộp chữ nhật.
|
D. Các mặt bên của hình lăng trụ đứng là hình chữ nhật.
|
Câu 46
Hãy chọn câu đúng.
A. Phương trình x = 0 và x(x + 1) là hai phương trình tương đương
|
B. kx + 5 = 0 là phương trình bậc nhất một ẩn số
|
C. Trong một phương trình ta có thể chuyển một hạng tử vế này sang vế kia đồng thời đổi dấu của hạng tử đó
|
D. Phương trình x = 2 và |x| = 2 là hai phương trình tương đương
|
Câu 47
Tam giác ABC, có A B = 3 cm, AC = 4cm, đường phân giác AD thì tỉ số hai đoạn BD và CD bằng :
A. 6.
|
B. 12.
|
C.
|
D.
|
Câu 48
Một hình chữ nhật có chu vi 20 m, nếu tăng chiều dài 2 m và tăng chiều rộng 1 m thì diện tích tăng 16 m2. Chiều dài của hình chữ nhật là:
A. 8 m.
|
B. 12 m
|
C. 6 m
|
D. 4 m
|
Câu 49
Số nghiệm của phương trình |2x – 3| - |3x + 2| = 0 là
A. 3
|
B. 2
|
C. 0
|
D. 1
|
Câu 50
Hình lập phương có diện tích toàn phần bằng 54cm2. Thì thể tích bằng?
A. 9 cm3.
|
B. 25 cm3.
|
C. 27 cm3.
|
D. 54 cm3. |
(x-2)^2 - x^2 - 8x+3 >= 0
x^2-4x+4 - x^2-8x +3 >=0
7>=12x
x<=12/7
x nguyên lớn nhất là 1
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
Tìm số nguyên x lớn nhất thỏa mãn mỗi bất phương trình sau: 5,2 + 0,3x < - 0,5
Ta có: 5,2 + 0,3x < - 0,5
⇔ 0,3x < - 0,5 – 5,2
⇔ 0,3x < - 5,7
⇔ x < -19
Vậy số nguyên lớn nhất cần tìm là -20
a) Tìm tất cả nghiệm nguyên dương của bất phương trình : \(11x-7< 8x+7\)
b) Tìm tất cả nghiệm nguyên âm của bất phương trình \(\frac{x^2+2x+8}{2}-\frac{x^2-x+1}{6}>\frac{x^2-x+1}{3}-\frac{x+1}{4}\)
c)Tìm nghiệm nguyên nhỏ nhất của bất phương trình : \(2\left(3-x\right)-1,5\left(x-4\right)< 3-x\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
c)2(3-x)-1,5(x-4)<3-x
<--->6-2x-1,5x+6<3-x
<--->6+6-3<2x+1,5x-x
<--->9<2,5x
<--->3,6<x mà x la so nguyen nhỏ nhất
--->x=4
Tìm số nguyên x lớn nhất thỏa mãn mỗi bất phương trình sau: 1,2 – (2,1 – 0,2x) < 4,4
Ta có: 1,2 – (2,1 – 0,2x) < 4,4
⇔ 1,2 -2,1 + 0,2x < 4,4
⇔ 0,2x < 4,4 – 1,2 + 2,1
⇔ 0,2x < 5,3
⇔ x < 53/2
Vậy số nguyên lớn nhất thỏa mãn điều kiện là số 26.
Cho \(x\ge0,y\ge0\) và thỏa mãn \(x+y=1\). Tìm giá trị lớn nhất của biểu thức: \(A=x^2y^2\left(x^2+y^2\right)\)
Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$
$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$
$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$