Tìm tất cả các số tự nhiên n sao cho 3n+9.n+36 là số nguyên tố
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Tìm tất cả các số tự nhiên n để: 3^n + 9.n + 36 là số nguyên tố.
Tìm tất cả các số tự nhiên n sao cho \(p=3n^3-7n^2+3n+6\) là một số nguyên tố
\(P=3n^3-7n^2+3n+6\)
\(=3n^3+2n^2-9n^2-6n+9n+6\)
\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)
\(=\left(3n+2\right)\left(n^2-3n+3\right)\)
để p là nguyên tố thì 3n+2 hoặc n2-3n+3 phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
*3n+2=1=>n=-1/3
*n2-3n+3=1<=>n2-3n+2=0
\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)
nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)
vậy n=1
Tìm tất cả các số tự nhiên n để : 3n + 9.n + 36 là số nguyên tố
Với n=0 => 3n + 9n + 36 = 37 là số nguyên tố
Với n>0 => 3n chia hết chi 3, 9n chia hết cho 3, 36 chia hết chi 3 mà 3n + 9n + 36 > 3 nên 3n + 9n + 36 là hợp số
Vậy n=0
Tìm tất cả các số tự nhiên n để :
3n + 9 . n + 36 là số nguyên tố
3n +9n + 36 chia hết cho 3 khi n thuộc N* (và tổng khác 3)
=> Là hợp số
=> n không thuộc N* và n tự nhiên
=> n = 0
b) Tìm tất cả các số tự nhiên n để 3n + 6 là số nguyên tố.
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.
Tìm tất cả các số tự nhiên n sao cho 3n+9.n+36 là số nguyên tố. Giải thích rõ ràng giúp em luôn nhé
Nếu n>0 => 3n+9n+36 chia hết cho 3 là hợp số ( loại )
Nếu n=0 => 3n+9n+36 = 1+0+36 =37 là số nguyên tố (nhận)
Vậy n=0
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
Tìm tất cả các số tự nhiên n sao cho \(n^3+3n^2+n+3\) là lũy thừa của một số nguyên tố