Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hoàng Khánh
Xem chi tiết
Lê hoàng khánh
Xem chi tiết
Trên con đường thành côn...
22 tháng 7 2021 lúc 8:11

undefined

Trên con đường thành côn...
22 tháng 7 2021 lúc 8:07

undefined

kim quỳnh hương
Xem chi tiết
thạnh nguyễn
Xem chi tiết

a) ( 10x3y - 5x2y2 - 25 x4y3) : ( -5xy)

Ta có : -5xy( -2x2 + xy + 5x3y2) : ( - 5xy)

Vậy , ta được thương là : -2x2 + xy + 5x3y2

b) ( 27x3 - y3) : ( 3x - y)

Ta có : ( 3x - y)( 9x2 + 3xy + y2) : ( 3x - y)

Vậy , ta được thương là : 9x2 + 3xy + y2

C,D chịu

hong tran
Xem chi tiết
Phước Lộc
2 tháng 3 2020 lúc 19:54

1) 2x + 2y - x(x+y)

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2/ 5x2 - 5xy -10x + 10y

= 5x(x - y) - 10(x - y)

= (5x - 10(x - y)

3/ 4x2 + 8xy - 3x - 6y

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

Khách vãng lai đã xóa
Thu Huệ
2 tháng 3 2020 lúc 19:59

1) 2x + 2y - x(x + y) 

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2) 5x2 - 5xy - 10x + 10y 

= 5x(x - y) - 10(x - y)

= (5x - 10)(x - y)

= 5(x - 2)(x - y)

3) 4x2 + 8xy - 3x - 6y  

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

4) 2x2 + 2y2 - x2z + z - y2z - 2 

= 2(x2 + y2 - z(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2)

5) x2 + xy - 5x - 5y

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

6) x(2x - 7) - 4x + 14 

= x(2x - 7) - 2(2x - 7) 

= (x - 2)(2x - 7)

7)x2 - 3x + xy - 3y  

= x(x + y) - 3(x + y)

= (x - 3)(x + y)

Khách vãng lai đã xóa
Phước Lộc
2 tháng 3 2020 lúc 20:02

5/ x2 + xy - 5x - 5y 

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

6/ x(2x - 7) - 4x + 14

= 2x2 - 7x - 4x + 14

= (2x2 - 4x) - (7x - 14)

= 2x(x - 2) -7(x - 2)

= (2x - 7)(x - 2)

7/ x2 - 3x + xy - 3y

= x(x - 3) + y(x - 3)

= (x + y)(x - 3) 

Khách vãng lai đã xóa
Lê Hoàng Thùy Linh
Xem chi tiết
Kiều Vũ Linh
20 tháng 10 2023 lúc 8:19

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2017 lúc 18:18

(Các phần giải thích học sinh không phải trình bày).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Vì hệ số của y ở 2 pt đối nhau nên cộng từng vế của 2 pt).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x ở 2 pt bằng nhau nên ta trừ từng vế của 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân cả hai vế của pt 2 với 2 để hệ số của x bằng nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x bằng nhau nên ta trừ từng vế của 2 pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên cộng từng vế hai phương trình).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 1 với 4 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên ta cộng từng vế 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

Tho Nguyễn Văn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 9:31

a: =>x-xy+y=0

=>x(1-y)+1-y-1=0

=>(x+1)(1-y)=1

=>(x+1)(y-1)=-1

=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)

b: 2x-xy-2y=3

=>x(2-y)-2y+4=7

=>x(2-y)+2(2-y)=7

=>(x+2)(y-2)=-7

=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)

c: =>x(4-y)+5y-20=-3

=>x(4-y)-5(4-y)=-3

=>(4-y)(x-5)=-3

=>(x-5)(y-4)=3

=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)

Nguyễn Phương Thảo
Xem chi tiết