tìm số tự nhiên n sao cho
n+3 chia hết n+1
n2+3n +4 chia hết n+3
Tìm số tự nhiên sao cho:
a,n+2 chia hết cho n-1
b,n+4 chia hết chon+1
c,2n+7 chia hết cho n+1
d,2n+1 chia hết cho n-3
a) n+2 chia hết cho n - 1
=> n-1 + 3 chia hết cho n -1
=> n - 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {2;0;4;-2}
b) n +4 chia hết cho n + 1
=> n + 1 + 3 chia hết cho n + 1
=> n + 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {0;-2;2;-4}
c) 2n + 7 chia hết cho n + 1
=> n + 1 + n + 1 + 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 = {1;-1;5;-5}
=> n = {0;-2;4;-6}
d) 2n + 1 chia hết cho n - 3
=> n - 3 + n - 3 - 5 chia hết cho n - 3
=> n - 3 thuộc Ư(-5) = {1;-1;5;-5}
=> n = {4;2;8;-2}
a) Vì n+2 chia hết cho n-1 => (n-1)+3 chia hết cho n-1
Vì \(n-1⋮n-1\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n-1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
=> n={2;0;4;-2}
b) Vì n+4 chia hết cho n+1 => (n+1)+3 chia hết cho n+1
Mà \(\left(n+1\right)⋮n+1\Rightarrow3⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n+1 | 1 | 3 | -1 | -3 |
n | 0 | 2 | -2 | -4 |
=> n={0;2;-2;-4}
c) Vì 2n+7 chia hết cho n+1 => 2(n+1)+5 chia hết cho n+1
Mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng sau:
n+1 | 1 | 5 | -1 | -5 |
n | 0 | 4 | -2 | -6 |
=> n={0;4;-2;-6}
d) Vì 2n+1 chia hết cho n-3 => 2(n-3)+7 chia hết cho n-3
Mà \(2\left(n-3\right)⋮\left(n-3\right)\Rightarrow7⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng sau:
n-3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |
=> n={4;10;2;-4}
Gì mak zài zữ zậy bạn
tìm số tự nhiên n sao cho:
a. n + 9 chia hết n + 4
b. n + 7 chia hết n + 3
c.2n + 11 chia hết n + 4
d. 3n + 28 chia hết n + 5
a n+9 chia het cho n+4
->(n+9)-(n+4) chia het cho n+4
->5 chia het cho n+4
->n+4 ={1;5}
-> n=-3;-1
b tương tự
c2n+11 chia hết cho n+4
vì n+4 chia hết cho n+4
->2(n+4) chia hết cho n+4
->2n+8 chia hết cho n+4
->(2n+11)-(2n+8) chia hết cho n+4
->3 chia hết cho n+4
->n+4 ={1;3}
-> n=-3 ; -1
d hướng dẫn : gấp n+5 lên 3 lần rồi lấy 3n+28 - 3n+15 =13 chia hết cho n+5
->n+5 ={1;13}
tự làm nốt nha có gì sai thi làm ơn chữa lại nghen
tìm số tự nhiên n
3.(n + 1) + 11 chia hết cho (n +3)
(3n + 16) chia hết cho ( n + 4)
28 -7n chia hết cho n + 3
+) \(3\left(n+1\right)+11⋮n+3\)
\(11⋮n+3\)
\(n+3\inƯ\left(11\right)=\left\{1;11\right\}\)
\(n=8\)
+) \(3n+16⋮n+4\)
\(3\left(n+4\right)+4⋮n+4\)
\(4⋮n+4\)
\(n+4\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n=0\)
+) \(28-7n⋮n+3\)
\(49-7\left(n+3\right)⋮n+3\)
\(49⋮n+3\)
\(n+3\inƯ\left(49\right)=\left\{1;7;49\right\}\)
\(n\in\left\{4;46\right\}\)
Câu 1.Tìm n thuộc tập hợp số tự nhiên:
a) n+4 chia hết cho n
b) 3n + 7 chia hết cho n
c) 27- 5n chia hết cho n
Câu 2.Tìm n thuộc tập hợp số tự nhiên sao cho:
a)n+6 chia hết cho n+2
b)2n+3 chia hết cho n-2
c) 3n +1 chia hết cho 11 - 2n.
Tìm số tự nhiên n sao cho
3n+14 chia hết [3n+1]
n+11 chia hết [ n+3 ]
[2n +27] chia hết [2n +1]
3n + 14 chia hết cho 3n + 1
3n + 14 =( 3n + 1 ) + 13 chia hết cho 3n + 1
= (3n + 1 ) chia hết cho 3n + 1
Suy ra 13 chia hết cho 3n + 1
Suy ra 3n + 1 thuộc Ư(13)={ 1 ; 13 }
3n + 1 | 1 | 13 |
n | 0 | 4 |
Vậy n thuộc { 0 ; 4 }
n + 11 chia hết cho n + 3
n + 11 = ( n + 3 ) + 8 chia hết cho n + 3
= n + 3 chia hết cho n + 3
Suy ra 8 chia hết cho n + 3
Suy ra n + 3 thuộc Ư(8) = { 1;2;4;8 }
n+ 3 | 1 | 2 | 4 | 8 |
n | không có giá trị nào cho n | không có giá trị nào cho n | 1 | 5 |
Vậy n thuộc {1 ; 5 }
2n + 27 chia hết cho 2n + 1
2n + 27 =( 2n + 1 )+ 26 chia hết cho 2n + 1
= ( 2n + 1 ) chia hết cho 2n + 1
Suy ra 2n + 1 thuộc Ư( 26 ) = { 1 ; 2 ; 13 ; 26 }
2n +1 | 1 | 2 | 13 | 26 |
n | 0 | ko có giá trị cho n | 6 | ko có giá trị cho n |
Vậy n thuộc { 0;6}
Nếu đúng thì mk và kb nha love you thanks mk nhanh nhất đó
1. Tìm số tự nhiên n sao cho:
a. n+3 chia hết cho n-1
b. 3n-5 chia hết cho n+1
a. Ta có: n + 3 ... n - 1
=> n - 1 + 4 ... n - 1
Vì n - 1... n - 1 => 4 ... n - 1 => n - 1 là ước của 4 => n - 1 thuộc (1; 2; 4) =>n thuộc (2; 3; 5)
b. Ta có: 3n - 5 ... n - 1
=>3n - 3 - 2 ... n - 1
=>3(n - 1) - 2 ... n - 1
Vì n - 1 ... n - 1 => 3(n - 1) ... n - 1 => 2 ... n - 1 => n - 1 là ước của 2 => n - 1 thuộc (1; 2) => n thuộc (2; 3)
*dấu"..." là nghĩa là chia hết cho
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
Tìm số tự nhiên n sao cho
a ) 2n + 7 chia hết cho n-2
b ) n mũ hai + 3n + 4 chia hết cho n+3
n mũ 2+3n+4 chia hết cho n+3
=>n(n+3)+4 chia hết cho n+3
=>n(n+3) chia hết cho n+3
và 4 chia hết cho n+3
hay n+3 thuộc Ư(4)
Mà Ư(4)=(-4;-2;-1;1;2;4)
=>n=2;4;7
Tìm số tự nhiên n sao cho
a ) 2n + 7 chia hết cho n-2
b ) n mũ hai + 3n + 4 chia hết cho n+3
a) 2n + 7 chia hết cho n - 2
<=> 2n - 4 + 11 chia hết cho n - 2
<=> 2(n - 2) + 11 chia hết cho n - 2
<=> 11 chia hết cho n - 2
<=> n - 2 thuộc Ư(11)={-1;1;-11;11}
=> n thuộc {1;3;13}
n^2 + 3n + 4 chia hết cho n + 3
<=> n(n + 3) + 4 chia hết cho n + 3
<=> 4 chia hết cho n + 3
<=> n + 3 thuộc Ư(4)={-1;1;-4;4}
=> n thuộc {2;4;7}