Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uzumaki Naruto
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
7 tháng 9 2017 lúc 12:42

Một số có hai chữ số tận cùng bằng 25 \(⋮\) 25. Một số \(⋮\) 4 và 25 thì \(⋮\) 100( 4 và 25 nguyên tố cùng nhau) 

Mặt khác: \(\left(2^{10}\right)+1⋮25\)và \(2^9+2^{99}⋮4\)

Ta có: 

\(2^9-2^{99}=\left(2^9+2^{19}\right)-\left(2^{19}+2^{29}\right)+\left(2^{29}+2^{39}\right)-...+...-\left(2^{79}+2^{89}\right)+\left(2^{89}+2^{99}\right)\)

\(=\left(1+2^{10}\right)\cdot\left(2^9-2^{19}+2^{29}-2^{39}+....+2^{99}\right)\)
\(\Rightarrow2^9+2^{99}⋮25\)

\(\Rightarrow2^9+2^{99}⋮100\)

Bexiu
7 tháng 9 2017 lúc 12:30

Bài làm

Cách 1: ta có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25) 
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90) 
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.

nguyễn tiến nam
Xem chi tiết
Akai Haruma
14 tháng 1 2020 lúc 10:09

Lời giải:
a)

Ta có:

\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)

\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)

\(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)

Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)

b)

\(2^9+2^{99}=2^9(1+2^{90})\)

Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$

$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$

Mà $2^9\vdots 4$

Do đó:

$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)

Khách vãng lai đã xóa
edogawaconan
Xem chi tiết
T.Ps
3 tháng 6 2019 lúc 21:29

#)Giải :

a) Đặt A = 29 + 299 = 29 + ( 211)

A = ( 2 + 211)( 2- 27 x 211 + ... - 2 x 277 + 288)

Nhân tử thứ nhất 2 + 211 = 2050

Nhân tử thứ hai là một số chẵn = 2A ( vì là tổng hiệu của các bội của 2 ) 

=> A = 2050 x 2A = 4100 x A => A chia hết cho 100

T.Ps
3 tháng 6 2019 lúc 21:33

#)Giải :

b) A = 3638+4143

A = 3633 . 365 + 4133

A = 3633 . 365 + 3633 - 3633 + 4133

A = 3633 ( 365 + 1 ) - (3633 - 4133)

A = 77.Q1 - 77.Q2

=> A chia hết cho 77

             #~Will~be~Pens~#

zZz Cool Kid_new zZz
4 tháng 6 2019 lúc 7:15

๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ):ai cho bạn cái công thức mà \(a^n-b^n⋮a+b????\)

Ta có:\(7\cdot11=77\) mà \(\left(7;11\right)=1\) nên ta cần CM \(36^{38}+41^{43}⋮11\) và 7.

Ta lại có:

\(36^{38}+41^{43}\)

\(=\left(36^{38}-1^{38}\right)+\left(41^{43}+1^{43}\right)\)

\(=35A+42B⋮7\left(1\right)\)

Mặt khác:

\(36^{38}+41^{43}\)

\(=\left(36^{38}-3^{38}\right)+\left(41^{33}+3^{33}\right)+\left(3^{38}-3^{33}\right)\)

\(=33P+44Q+3^{33}\left(3^5-1\right)\)

\(=11\left(3P+4Q+2.3^{33}\right)⋮11\left(2\right)\)

Từ (1);(2) suy ra  đpcm.

Princess Cloudy
Xem chi tiết
Phạm Tuấn Đạt
25 tháng 7 2018 lúc 8:57

\(A=2^9+9^{99}\)

\(A=\left(2^4\right)^2.2+\left(9^2\right)^{49}.9\)

\(A=\left(...6\right)^2.2+\left(...1\right)^{49}.9\)

\(A=\left(....2\right)+\left(...9\right)̸\)

\(A=\left(...1\right)\)không chia hết cho 10

Princess Cloudy
25 tháng 7 2018 lúc 9:02

hả , vậy là ko chia hết sao, kì vậy

Dương Khánh Linh
Xem chi tiết
Đinh Tuấn Việt
4 tháng 7 2015 lúc 20:45

a có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25) 
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90) 
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.

Có ai chơi avatar musik...
Xem chi tiết
Võ Mỹ Lâm
18 tháng 11 2015 lúc 20:47

a) 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3

(2^1 + 2^2) + (2^3+2^4)+.....+(2^99+2^100)

2.(1+2)+2^3.(1+2)+....+2^99(1+2)

(2+2^3+...+2^99).(1+2)

(2+2^3+...+2^99).3

Vì 3 chia hết cho 3 nên (2+2^3+...+2^99).3 chia hết cho 3

hay  2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3

Meo Xinh
Xem chi tiết
Phúc
13 tháng 1 2018 lúc 23:59

Ta co

A=2-22+23-....-298+299-2100

  =2(1-2+4)-....-298(1-2+4)

 =2.3-...-298.3\(⋮3\)

Ma A chia het cho 2

  (2;3)=1

=> A chia het cho 6(DPCM)

Hưng Bùi Minh
Xem chi tiết
Naughty Princess
16 tháng 12 2016 lúc 9:07

 C = 2+2^2 + 2^3 + 2^4 + 2^5 ..... + 2^97 + 2^98 + 2^99 + 2^100

    = ( 2 + 2^2 + 2^3 + 2^4 + 2^5)+........+  (2^97 + 2^98 + 2^99 + 2^100 )

    = 2(1+2+2^2 + 2^3 + 2^4)+..........+ 2^96(1+2+2^2 + 2^3 + 2^4)

    =2.31 +...........+2^96.31

    = 31(2+....+2^96)

Vì  31(2+....+2^96) chia hết cho 31

nên C chia hết cho 31

Nhớ bấm đúng cho mình nhé bạn!!!!!!!!

Cao Thành Đông
Xem chi tiết
bao quynh Cao
31 tháng 3 2015 lúc 12:16

\(C=2+2^2+...+2^{100}\)

\(C=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^5+2^6+2^7+2^9+2^{10}\right)...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(C=2.\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(C=2.31+2^5.31+...+2^{96}.31\)

\(C=31.\left(2+2^5+...+2^{96}\right)\)(VÌ TÍCH CÓ THỪA SỐ 31 NÊN CHIA HẾT CHO 31)