CHo tam giác ABC vg tại A , đcao AH . Tính BC nếu biết CH=3cm , AB = 3✓4 cm
( Vẽ hình hộ )
CHo tam giác ABC vg tại A , đcao AH . Tính BC nếu biết CH=3cm , AB = 3 căn 4 cm
CHo tam giác ABC vg tại A , đcao AH . Tính BH và CH biết AC = 16 cm và AB/AC = 3/4
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
nên \(AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot16=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{12^2}{20}=\dfrac{144}{20}=7,2\left(cm\right)\\CH=\dfrac{16^2}{20}=\dfrac{256}{20}=12,8\left(cm\right)\end{matrix}\right.\)
CHo tam giác ABC vg tại A , đcao AH . tính CH biết AB = 25 cm , AC = 5 căn 3 .
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=25^2+75=700\)
hay \(BC=10\sqrt{7}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AC^2=CH\cdot BC\)
\(\Leftrightarrow CH=\dfrac{75}{10\sqrt{7}}\)
hay \(CH=\dfrac{15\sqrt{7}}{14}\left(cm\right)\)
Cho Tam giác ABC vg B ( AC>AB) D là điểm thuộc AC sao cho AB=AD. Kẻ AH vg BD , AH cắt BC tại E
a) Tam giác ABH=ADH
b) tam giác EBD cân
tu ve hinh :
a, xet tamgiac AHB va tamgiac AHD co : AH chung
goc AHB =goc AHD = 90o do AH | BD (gt)
AB = AD (gt)
=> tamgiac AHB = tamgiac AHD (ch - cgv) (1)
b, (1) => goc BAE = goc EAD (dn)
xet tamgiac BAE va tamgiac DAE co : AE chung
BA = AD (gt)
=> xet tamgiac AHB = tamgiac AHD (c - g - c)
=> EB = ED (dn)
=> tamgiac EBD can tai E (dn)
vay_
Cho Tam giác ABC vg B ( AC>AB) D là điểm thuộc AC sao cho AB=AD. Kẻ AH vg BD , AH cắt BC tại E
a) Tam giác ABH=ADH
b) tam giác EBD cân
a: Xét ΔABH vuông tại H và ΔADH vuông tại H có
AB=AD
AH chung
=>ΔABH=ΔADH
b: Xét ΔBAE và ΔDAE co
AB=AD
góc BAE=góc DAE
AE chung
=>ΔBAE=ΔDAE
=>EB=ED
=>ΔEBD cân tại E
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HM ⊥ AB;HN ⊥ AC. Biết AB = 3cm; AC = 4 cm
a) Tính BC, BH, CH, MN
a) Xét tam giác ABC vuông tại A, đường cao AH có:
B C 2 = A B 2 + A C 2 = 25 ⇒ BC = 5(cm)
AB2 = BH.BC ⇒ BH = AB2/BC = 9/5 = 1,8(cm)
BH + CH = BC⇒ CH = BC - BH = 5 - 1,8 = 3,2 (cm)
A H 2 = BH.CH ⇒ AH = B H . C H = 1 , 8 . 3 , 2 = 2,4 (cm)
Xét tứ giác AMHN có:
∠(MAN) = ∠(ANH) = ∠(AMH) = 90 0
⇒ Tứ giác AMHN là hình chữ nhật
⇒ MN = AH = 2,4 (cm)
Cho tam giác ABC vuông tại A, đcao AH. Biết CH - BH = 3(cm) và AB = căn 5 (cm). Tính BH, CH, AH, AC và diện tích tam giác ABC???
Cho tam giác ABC. Đcao AH. Kẻ HM vuông góc với AB tại M, HN vuông góc với AC tại N.
a, CM AH2=AB.AM
b, CM AC.AN=AB.AM
c, So sánh góc AMN và góc ACB
d, Gọi O là giao điểm 3 đường trung trực của tam giác ABC. CM OA vuông góc với MN
GIÚP MÌNH PHẦN D VỚI. Dùng cách lớp 8 nha
Cho tam giác ABC vuông tại A (AC > AB ) , đường cao AH . Biết BC= 5 cm , BH= 0.125 cm , M là trung điểm BC , đường trung trực BC cắt AC tại D.
a) Tính AB , AH .
b) Tính tỉ số diện tích của tam giác DMC và tam giác ABC .
tao chịu mày thế thì mày hỏi làm cái đéo gì hả ôn con