Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
꧁❥Hikari-Chanツ꧂
Xem chi tiết
Akai Haruma
19 tháng 7 2021 lúc 18:28

Lời giải:
Xét tam giác $BED$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BED}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BED\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BE}{BD}=\frac{BA}{BC}$

$\Rightarrow BE=\frac{BA.BD}{BC}=\frac{AB^2}{2BC}$
Có:
$EC^2-EB^2=(BC-EB)^2-EB^2=BC^2-2BC.EB=BC^2-2BC.\frac{AB^2}{2BC}=BC^2-AB^2=AC^2$
Ta có đpcm.

Akai Haruma
19 tháng 7 2021 lúc 18:30

Hình vẽ:

KaiQian
Xem chi tiết
Van Nguyen
Xem chi tiết
Duy Lê
Xem chi tiết
bichbich
Xem chi tiết
ひまわり(In my personal...
19 tháng 1 2021 lúc 17:29

undefinedMình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE

Nguyễn Phương Vy 123
Xem chi tiết
nguyễn quỳnh giao
Xem chi tiết
Dancing Line & More
Xem chi tiết
Phong Linh
Xem chi tiết
Nguyễn Đăng Nhân
11 tháng 2 2021 lúc 11:20

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

Khách vãng lai đã xóa