Vẽ đường cao AH \(\Rightarrow DE\parallel AH(\bot BC)\) mà D là trung điểm AB
\(\Rightarrow E\) là trung điểm BH \(\Rightarrow EB=EH\)
Ta có: \(EC^2-EB^2=\left(EC-EB\right)\left(EC+EB\right)=\left(EC-BH\right)BC\)
\(=CH.BC\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow AC^2=EC^2-EB^2\)