Chứng minh rằng:
10002+10032+10052+10062=10012+10022+10042+10072
. Cho tam giác ABC cân tại A, AI là tia phân giác của góc A. a) Chứng minh rằng: = AIB AIC. b) Chứng minh AI BC. ⊥ c) Kẻ IM AB ⊥ tại M, IN AC ⊥ tại N. Chứng minh rằng MN // BC
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
a)chứng mình rằng : 14^14-1 chia hết cho 13
b)chứng minh rằng : 2015^2016 -1 chjia hết cho 2014
a) Ta sẽ dùng cách cm gián tiếp:
Cho A = 14^13 + 14^12 + .... +14 + 1
=> 14A = 14^14 + 14^13 +...+14^2 +14
=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)
13A = 14^14 - 1
Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)
b) Tương tự như vậy:
Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1
=> 2015B = 2015^2016 + 2015^2015 +...+2015^2 +2015
=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)
2014B = 2015^2016 - 1
Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)
Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :
a, 14^14đồng dư 1^14đồng dư 1(mod13)
Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13) (đpcm)
b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1
...........rồi bạn suy ra nhé
Cho 2a + 5 chia hết cho 7 . Chứng minh rằng 10a+11 chia hết cho 7
a + 5b chia hết 3 . Chứng minh rằng : 5a+3 chia hết 3
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
a , Chứng minh rằng ƯC ( a; b ) = ( a, a + b )
b, Chứng minh rằng ƯC ( a; b ) = ( a , ( a + b ) : 2
Ai đó giúp mình với ! Thank !
Cho tam giác ABC có AB=6cm, AC=8cm, BC=10cm.
a) Chứng minh rằng tam giác ABC là tam giác vuông.
b) Kẻ đường cao AH. Gọi M và N lần lượt là hình chiếu của H trên AB và AC. Tính MN
c) Chứng minh rằng: AM.AB=AN.AC
d) Chứng minh rằng: BM.CN.BC=AH^3
Cho tam giác ABC vuông tại A. Đường cao AH
a Chứng minh rằng AH*BC=AB*AC
b Gọi BE là tia phân giác của tam giác ABC,BE cắt tại D
Chứng minh rằng tam giác ABD đồng dạng với tam giác CBE
c chứng minh rằng Ah*BH=BA*BH
Giúp mình với để tí mình nộp
a)Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\)
chung \(\widehat{BCA}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Leftrightarrow AH\times BC=AB\times AC\left(đpcm\right)\)
c) xét △ABE và △HBD có;
=DBH(BE là tia phân giác ABC)
BAE=BHA(=90)
⇒△ABE∼△HBD(g.g)
⇒\(\dfrac{AE}{DH}\)=\(\dfrac{AB}{HB}\)
⇒AE.HB=AB.DH
Cho A=102012+102011+102009+8
Chứng minh rằng A chia hết cho 24
Chứng minh rằng A không phải là số chính phương
\(A=10^{2012}+10^{2011}+10^{2009}+8\)
\(A=10^{2009}\left(10^3+10^2+10^1+8\right)\)
\(A=10^{2009}.1111+8\)
\(A=11110.....8\)( 2009 c/s 0 )
Không có số chính phương nào có tận cùng là 8
\(\Rightarrow\) A không phải là số chính phương.
A có ba chữ số tận cùng là 008 nên \(A⋮8\) ( 1 )
A có tổng các chữ số là 9 nên \(A⋮3\) ( 2 )
Từ (1)(2) kết hợp với ( 3,8 )=1 \(\Rightarrow A⋮24\)
BT1 : Cho hình vuông ABCD qua điểm M thuộc đường chéo AC kẻ ME vuông góc với AD , MF vuông góc CD .
a, Chứng minh rằng : BE vuông góc với AF.
b, Chứng minh rằng : BM vuông góc với EF.
c, Chứng minh rằng : Các đường thẳng BM , AF , CE đồng quy.
cho tam giác ABC có các điểm D, E theo thứ tự là trung điểm của AB, AC. trên tia DE lấy điểm F sao cho DE = EF
a) chứng minh rằng: tam giác AED = tam giác CEF và có nhận xét ji về DÂE và FCÊ
b) chứng minh rằng: AD // CF
c) Đường thẳng qua E và song song với AB cắt BC ở F. chứng minh rằng DE = 1 /2 BC