Cho tam giác vuông ABC,phân giác AD,đường cao AH.Biết BD=15,CD=20.Tính BH,BC.
Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH.Biết bd=15 cm;cd=20 cm ;. Độ dài đoạn bh = ? (Nhập kết quả dưới dạng số thập phân gọn nhất).
Cho tam giác ABC vuông tại A , phân giác AD , đường cao AH . Biết BD = 15 cm , CD = 20 cm . Tính BH , HC
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)
cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD= 15, CD= 20. Tính BH= ?
Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH.Biết BD=15 cm;CD=20cm.Tính độ dài đoạn thẳng CH
Bạn vẽ hình hộ nha
- ta có BC=BD+CD = 15+20 = 35; AB2 + AC2 =BC2 (ABC vuông tại A)
- Áp dụng t/c đường phân giác trong tam giác ABC có \(\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow\frac{AB}{15}=\frac{AC}{20}\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\)
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{35^2}{25}=49\)
\(\Rightarrow AB=3.7=21;AC=4.7=28\)
- Mặt khác: AC2 = CH.BC => CH = AC2 /BC = 282/35 = 22,4
Vậy CH = 22,4cm
a) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 8cm, BH = 4cm. Tính: BC, HC, AH.
b) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 6cm, BH = 3cm. Tính: BC, HC, AH.
a: \(AH=4\sqrt{3}\left(cm\right)\)
HC=12cm
BC=16cm
bài 1: Tính cạnh đáy BC của tam giác cân ABC biết đường cao ứng với cạnh đáy bằng 15,6 cm và đường cao ứng với cạnh bên bằng 12 cm
bài 2: Cho tam giác ABC vuông tại A , đường phân giác AD, đường cao AH.Biết BD = 7,5 cm và CD = 10 cm . Tính HA,HB,HD
cho tam giác abc vuông tại A,phân giác ad,đường cao ah.bd=15 cm,cd=20 cm,tính bh
tự vẽ hình
có BC=15+20=35
ta có \(\frac{bd}{dc}=\frac{ab}{ac}\)tính chất đường phân giác
\(\Rightarrow\frac{ab}{ac}=\frac{3}{4}\Rightarrow\frac{ab}{3}=\frac{ac}{4}=k\)
ab=3k ac=4k
ta có ab2+ac2=bc2
9k2+16k2=352
25k2=1225
k=7
=>ab=3k=21
ta có ab2=bh.bc
bh=441:35=12.6
tick cho minh nha
Bài 3: Cho tam giác ABC vuông tại A có BC = 20 cm, AC = 16 cm. Vẽ đường cao AH.
a) Chứng minh: HBA ABC; HBA HAC.
b) Chứng minh: AB2 = BH. BC; AH2 = HB.HC
c) Tính AB, AH, BH.
d) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
e*) Trên AH lấy điểm K sao cho AK = 3,6cm. Từ K kẻ đường thẳng song song với BC, cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)
c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)
cho tam giác ABC vuông tại A , phân giác AD đường cao AH . Biết BD =15 cm ,CD=20cm. Tính độ dài đoạn BH = ?
tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4
BC=15+20=35
AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25
=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)
tam giác vuông ABC có AH là đường cao
BH=\(\frac{AB^2}{BC}=12.6\)
tick nhaaaaaaaaaaaaaaaaaaa
cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD.
a, Tính AD
b, Gọi H là hình chiếu của A trên BC. Tính AH, HB
c, Cm tam giác AID cân