Chứng minh rằng (với mọi stn n) ta có 34n - 1 chia hết cho 5
Chứng minh rằng với mọi n là stn ta có :
1. n2-5n chia hết cho 2
2. 3n2+9n chia hết cho 6
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
mọi người ơi giúp mình với
2. chứng minh rằng với mọi STN n
a)7 mũ 4n-1 chia hết cho 5
làm đại, ko bt đúng ko nữa
74n-1=\(\dfrac{1}{7}\).74n=14n ko chia hết cho 5
Chứng minh rằng với mọi số tự nhiên n:
b) 34n + 1 + 2 chia hết cho 5
c) 24n + 1 + 3 chia hết cho 5
d) 24n + 2 + 1 chia hết cho 5
e) 92n+1 + 1 chia hết cho 10
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
42) a) Khi chia stn a cho 9,ta được số dư là 6.Hỏi số a có chia hết cho 3 không?
b) Khi chia stn a cho 12,ta được số dư là 9.Hỏi số a có chia hết cho 3 không? có chia hết cho 6 ko?
c) số 30.31.32.33.....40+111 có chia hết cho 37 không?
46)
a) Tích của 2 stn liên tiếp là 1 số chia hết cho 2
b) Với mọi n thuộc N , chứng tỏ rằng : n.(n+3) chia hết cho 2
c) với mọi n thuộc N ,chứng tỏ rằng :n^2+n+1 khong chia het cho 2
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Chứng minh rằng (n+4) . (n+5) chia hết cho 2 với mọi n thuộc tập hợp STN.
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Giúp với nha !!!!!
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Chứng minh 34n+1+32n.10-13 chia hết cho 64 với mọi n.
Có thể làm cách tách rồi xét tính chia hết không ạ? Em tìm có cách chứng minh quy nạp nhưng em chưa có học ạ):
Chứng minh rằng với mọi n thuộc N,ta có:
a) (2^4n+1 +3) chia hết cho 5
b) (5^n -1) chia hết cho 4