Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bui thi thu ha
Xem chi tiết
do thanh dat
Xem chi tiết
Andiez
Xem chi tiết
Lê
Xem chi tiết
Nguyễn Thị Ngọc Thơ
12 tháng 5 2020 lúc 5:06

\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

Mai
Xem chi tiết

100=10*10

100=1000:10

100 câu nói hay về cuộc sống 

Hà Anh Nguyễn
Xem chi tiết
ミ꧁༺༒༻꧂彡
1 tháng 4 2023 lúc 16:51

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}\)

Mà \(\dfrac{99}{100}< 1\Rightarrow A< 1\)

vũ khánh ngọc
1 tháng 4 2023 lúc 20:55

A<11⋅2+12⋅3+13⋅4+...+199⋅100�<11⋅2+12⋅3+13⋅4+...+199⋅100

A<1−1100�<1−1100

99100<1⇒A<1

Lê Mi Na
Xem chi tiết
Thiên Chỉ Hạc
9 tháng 8 2017 lúc 20:56

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

Nguyễn Thanh Hằng
9 tháng 8 2017 lúc 20:59

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

 Mashiro Shiina
9 tháng 8 2017 lúc 23:52

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

\(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 2-\dfrac{1}{100}\)

\(S< 2\rightarrowđpcm\)

win 10 ok
Xem chi tiết
Danhkhoa
Xem chi tiết