Tìm gtln của 2 trên căn x cộng 3
1. Tìm GTLN của biểu thức:
M=căn x trừ 1 trên căn x cộng 2(x lớn hơn bằng o)
P= 2 căn x trừ 1 trên x cộng hai căn cộng 1
2. Tìm GTNN của biểu thức
P = x cộng 3 trên căn x cộng 1
\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)
ĐKXĐ:x\(\ge\)1
M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)
Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)
=>không tồn tại GTLN của M
---câu thứ 2 đọc đề không hiểu---
2.ĐKXĐ:x>-1
\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)
Áp dụng BĐT cosi cho 2 số dương
\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)
Dấu = xảy ra khi x+1=2<=>x=1
=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1
Bài 1: Tìm GTNN của biểu thức: căn x(căn x-2)/ 1+ căn x
Bài 2: Tìm GTLN của biểu thức: căn x+3/4x
Tìm GTLN của : trừ x cộng căn x
Không biết viết dấu căn :((
Viết lại đề cho mn ( mk ko biết làm)
Tìm GTLN của :\(-x+\sqrt{x}\)
Đã biết viết dấu căn :))
Tìm GTNN của bt: căn x cộng 5 trên căn x cộng 2
Ý bạn là tìm GTNN của: \(\frac{\sqrt{x}+5}{\sqrt{x}+2}\) hay \(\frac{\sqrt{x+5}}{\sqrt{x+2}}\)??
Tìm GTLN 2 căn x trên x+1
Ta có \(\dfrac{2\sqrt{x}}{x+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\)
Áp dụng BĐT cosi, ta có:
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\Leftrightarrow\dfrac{1}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\le\dfrac{1}{2}\\ \Leftrightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\le1\)
Vậy GTLN của \(\dfrac{2\sqrt{x}}{x+1}\) là 1. Dấu \("="\) xảy ra \(\Leftrightarrow\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\)
a) Tìm GTLN của biểu thức A= căn x + 6 trên 2 căn x + 1
b) tìm x,y thuộc n biết ( 2^x + 2xy) (17+x+y)=2017
Cho A= căn x +2 trên căn x -5 và B= 3 trên căn x +5 rồi cộng cho 20-2 căn x trên x-25 đề a)rút gọn B b) tìm x để A=B×|x-4|
Tìm GTLN của Q= căn x+3 + căn 10-x
\(Q=\sqrt{x+3}+\sqrt{10-x}\)
\(\Leftrightarrow Q^2=\left(\sqrt{x+3}+\sqrt{10-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+3}\right)^2+\left(\sqrt{10-x}\right)^2\right]\)
\(\Leftrightarrow Q^2\le2\left(x+3+10-x\right)=2.13=26\)
\(\Leftrightarrow Q\le\sqrt{26}\)
\(maxQ=\sqrt{26}\Leftrightarrow x+3=10-x\Leftrightarrow x=\dfrac{7}{2}\)
Áp dụng BĐT Bunhiacopski:
\(Q=\sqrt{x+3}+\sqrt{10-x}\\ \Leftrightarrow Q^2=\left(\sqrt{x+3}+\sqrt{10-x}\right)^2\le\left(1^2+1^2\right)\left(x+3+10-x\right)=2\cdot13=26\\ \Leftrightarrow Q\le\sqrt{26}\\ Q_{max}=\sqrt{26}\Leftrightarrow x+3=10-x\Leftrightarrow x=\dfrac{7}{2}\)
Tìm GTNN và GTLN của biểu thức 3/ 2 + căn của 2x - x^2 + 3
Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath