Tìm số tự nhiên x biết rằng 1/3+1/6+1/10+...+2/x.(x-1)=2019/2021
tìm số tự nhiên x biết:
1/3+1/6+1/10+.....+2/(x+1)=2019/2021
Đề bạn thiếu 1 số \(x\) nữa đúng không?
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{2021}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2021}\)
\(\Rightarrow x+1=2021\)
\(\Rightarrow x=2020\)
Vậy \(x=2020\).
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2019}{4042}=\frac{1}{2021}\)
\(\Leftrightarrow x+1=2021\)
\(\Leftrightarrow x=2020\left(tm:x\in N\right)\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+............+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..........+\frac{1}{x\left(x+1\right)}\right]=\frac{2019}{2021}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+........+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Leftrightarrow\frac{1}{x-1}=\frac{1}{2021}\)
\(\Leftrightarrow x-1=2021\)
\(\Leftrightarrow x=2022\)
Vậy \(x=2022\)
Tìm số tự nhiên x, biết rằng:
1/3+1/6+1/10+...+2/x.(x+1)=2018/2019
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2018}{2019}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1009}{2019}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{4038}\)
\(\Rightarrow x+1=4038\)
\(\Rightarrow x=4037\)
Vậy \(x=4037\)
\(\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1009}{2019}\)
\(\frac{1}{x+1}=\frac{1}{4038}\)
\(x=4037\)
Bài 1 : Thực hiện phép tính
[(35−5):3] mũ 3+3
Bài 2 : Tìm số tự nhiên x biết
16 x +40 = 10.3 mũ2+ 5.( 1 + 2 +3)
Bài 3: Tính
S= 1 + 2- 3 – 4 + 5 + 6 -7 – 8 + 9 +10 -…+2018 -2019-2020+2021
Bài 1 : Thực hiện phép tính [(35−5):3] mũ3+3
Bài 2 : Tìm số tự nhiên x biết
16 x +40 = 10.3 mũ2+ 5.( 1 + 2 +3)
Bài 3: Tính
S= 1 + 2- 3 – 4 + 5 + 6 -7 – 8 + 9 +10 -…+2018 -2019-2020+2021
Giúp mình với mn!
Bài 2:
Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)
\(\Leftrightarrow16x+40=90+30\)
\(\Leftrightarrow16x=80\)
hay x=5
Bài 1 :
[( 35 - 5 ) : 3 ]3 + 3
= [30 : 3]3 + 3
= 103 + 3
= 1000 + 3
= 1003
Đây nha bạn!!!
Chúc bạn học tốt!!!
Tìm số tự nhiên x biết rằng : 1/3 + 1/6 + 1/10 +....+ 2/x(x+1) = 2007/2009
Đặt vế trái là A ta có:
\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...
Đặt vế trái là A ta có:
Tìm số tự nhiên x biết rằng :1/3+1/6+1/10+...+2/x(x+1)=1999/2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}:2\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}:2=\frac{1}{2001}\Rightarrow x+1=2001\Rightarrow x=2000\)
Tìm số tự nhiên x biết rằng : 1/3 +1/6 +1/10 + ... + 2/x(x+1) = 2007/2009
ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)
giải 1-2/(x+1) = 2007/2009 ta được x=2008
Tìm số tự nhiên x biết rằng: 1/3+1/6+1/10+...+2/x(x+1)=2015/2017
= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1)
= 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]
=2[1/2-1/(x+1)]= (x-1)/(x+1)
= 2001/2003
==> x=2002
Mình Giúp Họ Giải Toán Đầu tiên Mà Họ Lại Làm Ngơ sai bét
Tìm số tự nhiên x biết rằng 1/3+1/6+1/10+....+2/x(x+1)=1999/2001