Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn trinh
Xem chi tiết
Cô Hoàng Huyền
9 tháng 11 2017 lúc 17:01

Đường tròn c: Đường tròn qua B với tâm O Đường tròn d: Đường tròn qua O với tâm I Đoạn thẳng j: Đoạn thẳng [D, A] Đoạn thẳng k: Đoạn thẳng [I, O] Đoạn thẳng l: Đoạn thẳng [B, E] Đoạn thẳng m: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [D, O] Đoạn thẳng p: Đoạn thẳng [A, B] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [C, B] Đoạn thẳng s: Đoạn thẳng [A, E] Đoạn thẳng t: Đoạn thẳng [D, B] Đoạn thẳng a: Đoạn thẳng [C, K] O = (1.07, -4.08) O = (1.07, -4.08) O = (1.07, -4.08) B = (8.62, -4.08) B = (8.62, -4.08) B = (8.62, -4.08) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm E: Giao điểm đường của h, i Điểm E: Giao điểm đường của h, i Điểm E: Giao điểm đường của h, i Điểm I: Trung điểm của D, E Điểm I: Trung điểm của D, E Điểm I: Trung điểm của D, E Điểm K: Giao điểm đường của s, t Điểm K: Giao điểm đường của s, t Điểm K: Giao điểm đường của s, t H

a) Do DA và DC là các tiếp tuyến của đường tròn (O) nên DA = DC (T.c hai tiếp tuyến cắt nhau)
Tương tự EB = EC

Vậy nên DE = DC + CE = AD + BE

b) Ta thấy DA = DC; OA = OC nên OD là đường trung trực của đoạn AC.

Theo tính chất hai tiếp tuyến cắt nhau ta có \(OD\perp AC\)

Do AB là đường kính, C thuộc đường tròn (O) nên \(\widehat{ACB}=90^o\) hay \(BC\perp AC\)

Vậy nên OD//BC

c) Xét tứ giác ADEB có AD và BE cùng vuông góc với AB nên ADEB là hình thang vuông.

Xét hình thang vuông ADEB có I là trung điểm DE, O là trung điểm AB nên OI là đường trung bình hình thang ADEB.

Vậy thì \(OI=\frac{AD+BE}{3}=\frac{DE}{2}=ID\)

Vậy O nằm trên đường tròn \(\left(I,ID\right)\)

Lại có OI // DA //EB nên \(OI\perp AB\)

Vậy AB là tiếp tuyến của đường tròn \(\left(I,ID\right)\)

d)  Do AD // BE nên áp dụng định lý Ta-let ta có:

\(\frac{AK}{KE}=\frac{DK}{KB}=\frac{AD}{BE}\)

Lại có \(\frac{AD}{BE}=\frac{DC}{CE}\Rightarrow\frac{AK}{KE}=\frac{DC}{CE}\)

Xét tam giác ADE có \(\frac{AK}{KE}=\frac{DC}{CE}\) nên CK // DA

Mà DA vuông góc với AB nên CK cũng vuông góc với AB.

Xét tam giác ADB có KH // DA nên \(\frac{DA}{KH}=\frac{BD}{KB}=\frac{DK+KB}{KB}=\frac{DK}{KB}+1\)

Xét tam giác ADE có KC // DA nên \(\frac{DA}{KC}=\frac{AE}{KE}=\frac{AK+KE}{KE}=\frac{AK}{KE}+1\)

Mà ta đã có \(\frac{DK}{KB}=\frac{AK}{KE}\) nên \(\frac{DA}{KH}=\frac{DA}{KC}\Rightarrow KH=KC\) hay K là trung điểm CH.

Lê Yến Nhi
Xem chi tiết
ABC DEF
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Anh Thư Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2023 lúc 15:03

a: Xét (O) có

CM,CA là tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là trung trực của AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: Xét tứ giác MEOF có

góc MEO=góc MFO=góc EOF=90 độ

nên MEOF là hình chữ nhật

=>EF=MO=R

Hoàng Anh Tú
Xem chi tiết
phan tuấn anh
5 tháng 12 2015 lúc 21:50

tương tự bài dưới mk giải ấy

Nguyễn Văn Lao
Xem chi tiết
phan tuấn anh
5 tháng 12 2015 lúc 21:39

a, ta có OC và OD là 2 tia phân giác của 2 góc kề bù 

  ==> Góc COD=180/2=90độ

b, theo tính chất tiếp tuyến ta có MD=BD

Mặt khác OB=OM [cùng bằng bán kính]

do đó OD là đường trung trực của MB[Tính chất đường trung trực]

c, tương tự câu b ta có OC là đường trung trực của AM ==> AM vuông góc với OC

Mà OD vuông góc với OC[vì tam giác ODC vuông tại O]

Do đó AM // OD[cùng vuông góc với OC]

Uchiha Sasuke
Xem chi tiết