Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NO NAME GUYS
Xem chi tiết
Zero Two 02
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 6 2021 lúc 21:18

\(3=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

BĐT tương đương:

\(3\left(ab+bc+ca\right)\ge abc\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+6\right]\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\ge abc\left[15-2\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(2abc+3\right)\ge15abc\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(2abc+3\right)^2\ge225\left(abc\right)^2\)

Do \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(2abc+3\right)^2\ge25abc\)

\(\Leftrightarrow\left(1-abc\right)\left(9-4abc\right)\ge0\) (luôn đúng với \(0< abc\le1\))

Dấu "=" xảy ra khi \(a=b=c=1\)

NO NAME GUYS
Xem chi tiết
NO NAME GUYS
Xem chi tiết
tranvantinh
Xem chi tiết
tranvantinh
3 tháng 1 2023 lúc 18:34

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Dat Nguyen tuan
3 tháng 1 2023 lúc 18:36

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Dao Dao
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 20:08

a: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 21:27

c: Ta có: \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-3\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{4}{3}\end{matrix}\right.\)

Nguyen Thanh Tung
Xem chi tiết
Trần Anh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 9:31

a: Tọa độ A là:

x-2=0 và y=3

=>x=2 và y=3

Tọa độ B là:

x+2=0và y=3

=>x=-2 và y=3

b: Tọa độ M là:

3-m(x-2)=3-m(x+2) và y=3-m(x-2)

=>-m(x-2)+m(x+2)=0 và y=3-m(x-2)

=>-mx+2m+mx+2m=0 và y=3-m(x-2)

=>m=0 và y=3

=>M(x;3)

c: để Mtrùng A thì x=2

Hà Trần
Xem chi tiết
Lightning Farron
22 tháng 10 2017 lúc 23:01

Áp dụng BĐT AM-GM ta có:

\(VT=\dfrac{1}{a}-\dfrac{a}{c+a^2}+\dfrac{1}{b}-\dfrac{b}{a+b^2}+\dfrac{1}{c}-\dfrac{c}{b+c^2}\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\left(\dfrac{a}{c+a^2}+\dfrac{b}{a+b^2}+\dfrac{c}{b+c^2}\right)\)

\(\ge\dfrac{9}{a+b+c}-\left(\dfrac{a}{2a\sqrt{c}}+\dfrac{b}{2b\sqrt{a}}+\dfrac{c}{2c\sqrt{b}}\right)\)

\(\ge3-\left(\dfrac{1}{2\sqrt{c}}+\dfrac{1}{2\sqrt{a}}+\dfrac{1}{2\sqrt{b}}\right)\)\(=3-\left(\dfrac{2\sqrt{a}}{4a}+\dfrac{2\sqrt{b}}{4b}+\dfrac{2\sqrt{c}}{4c}\right)\)

\(\ge3-\left(\dfrac{a+1}{4a}+\dfrac{b+1}{4b}+\dfrac{c+1}{4c}\right)\)

\(=3-\left(\dfrac{3}{4}+\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\right)\ge3-\left(\dfrac{3}{4}+\dfrac{9}{4\left(a+b+c\right)}\right)=\dfrac{3}{2}\)

Khi \(a=b=c=1\)