Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Quốc Huy
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 7 2021 lúc 15:47

\(P=\dfrac{100a+10b+c}{a+b+c}\le\dfrac{100a+100b+100c}{a+b+c}=100\)

\(P_{max}=100\) khi \(b=c=0\)

Mặt khác ta có \(\left\{{}\begin{matrix}a\ge1\\c\le9\end{matrix}\right.\) \(\Rightarrow9a\ge c\Rightarrow90a\ge10c>9c\)

\(\Rightarrow P=\dfrac{10a+90a+10b+c}{a+b+c}>\dfrac{10a+9c+10b+c}{a+b+c}=10\)

Hay \(P-10>0\)

Ta cần tìm số k lớn nhất sao cho: \(\dfrac{100a+10b+c}{a+b+c}\ge k\) đồng thời \(10< k\le100\)

\(\Leftrightarrow100a+10b+c\ge ka+kb+kc\)

\(\Leftrightarrow\left(100-k\right)a\ge\left(k-10\right)b+\left(k-1\right)c\)

Mà \(\left\{{}\begin{matrix}\left(100-k\right)a\ge100-k\\\left(k-10\right)b+\left(k-1\right)c\le\left(k-10\right).9+\left(k-1\right).9=18k-99\end{matrix}\right.\)

\(\Rightarrow100-k\ge18k-99\Rightarrow k\le\dfrac{199}{19}\)

\(\Rightarrow k=\dfrac{199}{19}\)

Hay \(P_{min}=\dfrac{199}{19}\) khi \(\overline{abc}=199\)

Thái Bảo Nguyễn
Xem chi tiết
Trần Đại Nghĩa
Xem chi tiết
Lê Nhật Khôi
1 tháng 7 2019 lúc 15:42

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

Trần Đại Nghĩa
1 tháng 7 2019 lúc 15:46

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

Lê Nhật Khôi
1 tháng 7 2019 lúc 16:29

Đặt: \(\hept{\begin{cases}\overline{abc}=x\\\overline{def}=y\end{cases}}\)

Có: \(\overline{xy}-\overline{yx}=10\left(x-y\right)-\left(x-y\right)=9\left(x-y\right)\)

Vì \(9\left(x-y\right)⋮2010\)

nên: \(\left(x-y\right)⋮670\)

Tức: \(\left(\overline{abc}-\overline{def}\right)⋮670\)

Do đó: \(\overline{abc}-\overline{def}\in BCNN\left(670\right)=\left\{670;1340;...\right\}\)

Vì x,y là số có 3 chữ số nên có: \(\overline{abc}-\overline{def}=670\)

Tức có: \(\overline{abc}>771\&x>y\)

Có: \(100\left(a-d\right)+10\left(b-e\right)-600-70=0\)

\(\Leftrightarrow100\left(a-d-6\right)+10\left(b-e-7\right)=0\)

\(\hept{\begin{cases}a-d=6\\b-e=7\\c=f\end{cases}\left(a>6;b\ge7\right)}\)

Giả sử: a=9 thì d=3 thì tổng a và d lớn nhất nên chọn

Từ đó: b=8 và e=1 thì tổng b và e lớn nhất

Suy ra: c=f=7

Vì thế: \(\hept{\begin{cases}abc=987\\def=317\end{cases}\Rightarrow}abc+def=1304\)

Max là 1304

Làm bừa xem có đúng k nhỉ

17	Vũ Minh Khánh
Xem chi tiết
Nguyen My Van
11 tháng 5 2022 lúc 10:04

\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)

Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)

Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)

Vậy số cần tìm là 19

Sakai Yuji
Xem chi tiết
Tuấn Đạt
Xem chi tiết
Kyotaka Ayanokouji
Xem chi tiết
Trần Đình Hoàng Quân
Xem chi tiết
Dang Tung
14 tháng 6 2023 lúc 10:10

a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)

b) Để A nhận giá trị nguyên âm lớn nhất 

\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)

c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)

Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)

Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.

d) Mình nghĩ bạn thiếu đề ạ 

Vũ Ngọc Thảo Nguyên
Xem chi tiết