Tìm GTNN hoặc GTLN của :
D=lx+3l+lx-5l
Tìm GTLN hoặc GTNN của D biết D=lx+3l+lx-5l
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|ab\right|\) (dấu bằng xảy ra khi \(ab\ge0\))
\(\Rightarrow\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=\left|8\right|=8\)
=> Dmin = 8
Dấu "=" xảy ra khi \(\left(x+3\right)\left(5-x\right)\ge0\Rightarrow x\in\left\{-3;5\right\}\)
Tìm GTNN của:A=lx-3l+lx+5l
ta có Ix- 3I >= 0
Ix-5I >= 0
=> A >= 0
Đấu "=" đúng ở dạng ta có 2 th
TH1 x-3 = 0 => x = 3
=>Ix-5I = I3-5I = I-2I = 2
=> A = 0 + 2 =2
th2 x-5 = 0 => x = 5
=>Ix-3I = I5-3I = 2
=> A = 0+2 = 2
VẬY giá tri nhỏ nhất của A = 2
\(\left|x-3\right|+\left|x+5\right|\)
\(=\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)
\(\text{Dấu = xảy ra}\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(-5\le x\le3\)
\(\text{Vậy A đạt GTNN là 8 khi }-5\le x\le3\)
\(A=|x-3|+|x+5|\)
\(=|3-x|+|x+5|\ge|3-x+x+5|\)
Hay \(A\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-x\right)\left(x+5\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3-x\ge0\\x+5\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-x< 0\\x+5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge-5\end{cases}}\)hoặc \(\hept{\begin{cases}x>3\\x< -5\end{cases}\left(loai\right)}\)
\(\Rightarrow-5\le x\le3\)
Vậy Min A=8 \(\Rightarrow-5\le x\le3\)
Với giá trị nào của x thì A= lx-3l + lx-5l + lx-7l đạt GTNN
tìm GTNN của lx-1l+ lx-2l +lx-3l+ lx-4l
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
Tìm giá trị nhỏ nhất của biểu thức:P=lx+3l+lx-2l+lx-5l
ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)
mà \(\left|x-2\right|\ge0\)
\(\Rightarrow P\ge8\)
dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)
<=> x=2
vậy Pmin =8 <=> x=2
Tìm GTNN của T= lx-1l + lx-2l + lx-3l + lx-4l
Ta có
T=/x-1/+/x-2/+/x-3/+/x-4/
=/x-1/+/2-x/+/x-3/+/4-x/
Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2
nhớ tick mình nha
Tìm giá trị nhỏ nhất của biểu thức:
A = lx-2l + lx-3l + lx-4l + lx-5l
mk mới lp 6 ko giải đc toán lp 8!!!!Thông cảm nhé
1. với giá trị nào của x thì A=lx-3l + lx-5l + lx-7l đạt giá trị nhỏ nhất ?
2. với giá trị nào của x thì B= lx-1l + lx-2l + lx-3l + lx-5l đạt giá trị nhỏ nhất ?
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Tìm x:lx+1l+lx+3l+lx+5l=7x
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\) (*)
Ta có: \(\left|x+1\right|\ge0\forall x\)
\(\left|x+3\right|\ge0\forall x\)
\(\left|x+5\right|\ge0\forall x\)
\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge0\)
\(\Rightarrow7x\ge0\)
\(\Rightarrow x\ge0\)
Khi đó (*) có dạng:
\(x+1+x+3+x+5=7x\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=2,25\)
Vậy `x = 2,25`.