Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 7 2021 lúc 16:59

\(A=\dfrac{4\left(x^2-4x+4\right)+\left(x^2-8x+16\right)}{x^2-4x+4}=4+\left(\dfrac{x-4}{x-2}\right)^2\ge4\)

\(A_{min}=4\) khi \(x=4\) (A max ko tồn tại)

\(B=\dfrac{6\left(x^2+2x+1\right)+\left(4x^2+12x+9\right)}{x^2+2x+1}=6+\left(\dfrac{2x+3}{x+1}\right)^2\ge6\)

\(B_{min}=6\) khi \(x=-\dfrac{3}{2}\) 

B max ko tồn tại

Trần Văn Thành
Xem chi tiết
Ác ma
Xem chi tiết
TuiTenQuynh
8 tháng 1 2019 lúc 14:48

Bài 1 :

\(C=\frac{1}{\left|x-2\right|+3}\)

\(C\le\frac{1}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy....

TuiTenQuynh
8 tháng 1 2019 lúc 14:54

Bài 2 :

a) \(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)

\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)

\(\Rightarrow3x-1=5\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

b) \(2\cdot3^{x-405}=3^{x-1}\)

\(2=3^{x-1}:3^{x-405}\)

\(2=3^{x-1-x+405}\)

\(2=3^{404}\)( vô lí )

=> x thuộc rỗng

c) \(\frac{1}{81}\cdot27^{2x}=\left(-9\right)^4\)

\(\frac{27^{2x}}{81}=9^4\)

\(\frac{\left(3^3\right)^{2x}}{3^4}=\left(3^2\right)^4\)

\(\frac{3^{6x}}{3^4}=3^8\)

\(3^{6x-4}=3^8\)

\(\Rightarrow6x-4=8\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

d) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

\(\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-1=\left\{\pm1\right\}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\left\{\frac{1}{2};0\right\}\end{cases}}\)

khánh huyền
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Nguyễn Minh Thương
Xem chi tiết
Nguyễn Ngọc Anh Minh
29 tháng 8 2015 lúc 15:09

 

1/

a/ \(P\left(x\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\Rightarrow P\left(x\right)

zZz Đinh Thiên Trang zZz
9 tháng 7 2016 lúc 10:51

giúp tôi làm bài trên đi

Nguyen Khanh Duy
Xem chi tiết
Trần Cao Vỹ Lượng
Xem chi tiết
Tớ Đông Đặc ATSM
13 tháng 6 2019 lúc 9:36

A= 9- 2.(x^2-2x+ 1)= 9- 2.(x-1)2

Lại có (x-1)2 \(\ge\)0 => A\(\le\)

Vậy max A =9 <=> x-1=0 => x=1

b, B= 139/3-((x.√3)2+2.√3.2/(√3)+4/3)

= 139/3-(√3.x+2/√3)2

Lại có (√3.x+2/√3)2\(\ge\)0 => B\(\le\)139/3

Vậy maxB = 139/3 <=> x = -2/3

c,C= 25-2(x^2-2.x.3+9)= 25- 2(x-3)2

Laạạiại ccó (x-3)2\(\ge\)0

=> C\(\le\)25

Để max C = 25 <=> x-3= 0 <=> x=3

d, D=2163-( x^2-2.x.12+144)= 2163-(x-12)2

Lại có (x-12)2\(\ge\)

=> D\(\le\)2163

Để max D = 2163 <=> x-12 = 0 <=> x= 12

Trần Cao Vỹ Lượng
13 tháng 6 2019 lúc 9:40

hình như bạn nhầm đề à

Tớ Đông Đặc ATSM
13 tháng 6 2019 lúc 9:46

Nhầm đề câu nào hả cậu ? Tìm gtln mà