Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
czsf
Xem chi tiết
czsf
Xem chi tiết
Nguyễn Ngọc Quỳnh Như
Xem chi tiết
Ben 10
30 tháng 7 2017 lúc 21:07

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

czsf
Xem chi tiết
czsf
Xem chi tiết
aaaaaaaa
Xem chi tiết
Vũ Ngọc Linh
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 15:12

cho tam giác ABC và 3 điểm A',B',C' lần lượt nằm trên 3 cạnh BC,AC,AB ( A',B',C' không trùng với các đỉnh của tam giác )

Khi đó ta có : AA',BB',CC' đồng quy \(\Leftrightarrow\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)

A B C A' B' C'

Khách vãng lai đã xóa
Thanh Tùng DZ
26 tháng 4 2020 lúc 15:33

A B C H E M D P

Gọi P là giao điểm của AD và BE

Áp dụng định lí Ceva vào \(\Delta ABE\),ta có :

\(\frac{BP}{PE}.\frac{HE}{AH}.\frac{AM}{BM}=1\Rightarrow\frac{AH}{HE}=\frac{BP}{PE}\Rightarrow PH//AB\)

\(\Rightarrow\widehat{BAD}=\widehat{DPH}\)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{DAH}=\widehat{PDH}\Rightarrow\Delta AHP\)cân tại H

\(\Rightarrow HP=AH\)

Cần chứng minh \(DP//CE\Leftrightarrow\frac{BD}{BC}=\frac{BP}{BE}\Leftrightarrow\frac{BD}{BC}=1-\frac{EP}{BE}\)

Ta có : \(\frac{EP}{BE}=\frac{HP}{AB}=\frac{AH}{AB}=\frac{HD}{BD}\)

Khi đó : \(\frac{BD}{BC}=1-\frac{HD}{BD}\Leftrightarrow\frac{BD}{BC}+\frac{HD}{BD}=1\Leftrightarrow BD^2+HD.BC=BC.BD=\left(BD+DC\right).BD\)

\(\Rightarrow HD.BC=CD.BD\Rightarrow\frac{HD}{BD}=\frac{CD}{BC}\Leftrightarrow\frac{AH}{AB}=\frac{CD}{BC}\)

Ta có : \(\widehat{CDA}=\widehat{DBA}+\widehat{BAD}=\widehat{CAH}+\widehat{DAH}=\widehat{CAD}\)

\(\Rightarrow\Delta CAD\)cân tại C \(\Rightarrow CD=CA\)

Từ đó suy ra : \(\frac{AH}{AB}=\frac{AC}{BC}\)    ( đúng vì \(\Delta AHB~\Delta CAB\left(g.g\right)\))

Vậy ta có đpcm

Khách vãng lai đã xóa
Chu Thuy Hanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 20:52

a: Xét ΔHAB vuông tại H và ΔHAD vuông tại H có

HA chung

HB=HD

Do đó: ΔHAB=ΔHAD

b: Xét ΔCAD có \(\widehat{CDA}>90^0\)

nên CA>CD

Alice
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 23:45

a: Xét ΔABD vuông tại D và ΔACD vuông tại D có

AB=AC

AD chung

=>ΔABD=ΔACD

=>BD=CD

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF 

=>ΔAEF cân tại A

c: CI+2AD

=3IK+2*3/2*AK

=3*(IK+AK)>3AI