Cho tam giác ABC vuông tại A. AC>AB. AH là đường cao trong tam giác ABC. Lấy D thuộc tia HC sao cho: HD=HB
a, chứng minh tam giác HAB = tam giác HAD
b, chứng minh AC>CD
c, kẻ CE vuông góc AD (E € AD). Gọi K là giao điểm của AH và CE. Chứng minh: KD // AB
d, chứng minh DH là đường trung trực của AK
e, giả sử góc B = 60°. Chứng minh HC = 3HB
a: Xét ΔHAB vuông tại H và ΔHAD vuông tại H có
HA chung
HB=HD
Do đó: ΔHAB=ΔHAD
b: Xét ΔCAD có \(\widehat{CDA}>90^0\)
nên CA>CD