Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tạ thanh
Xem chi tiết
đỗ bùi trường sơn
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 9 2016 lúc 13:18

\(\frac{a}{4}-\frac{1}{b}=\frac{3}{4}\)

\(\Rightarrow\frac{1}{b}=\frac{3}{4}-\frac{a}{4}\)

\(\Rightarrow\frac{1}{b}=\frac{3-a}{4}\)

Áp dụng công thức tích chung tỷ = tích ngoại tỷ

=> b.(3 - a) = 1 . 4

=> 3.b - ab = 4

=> 3.b = 4 - a.b 

Cong Phuong
Xem chi tiết
chi chăm chỉ
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 7 2016 lúc 16:13

Đặt \(M=a^4+4b^4\)

Ta có : \(M=a^4+4b^4=\left(a^4+2.a^2.2b^2+4b^4\right)-4a^2b^2=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

Vì M là số nguyên tố nên chỉ có các trường hợp : 

1. \(\hept{\begin{cases}a^2-2ab+2b^2=1\\a^2+2ab+b^2=a^4+4b^4\end{cases}}\)

2. \(\hept{\begin{cases}a^2-2ab+2b^2=a^4+4b^4\\a^2+2ab+2b^2=1\end{cases}}\)

Bạn hãy giải từng trường hợp.

chi chăm chỉ
24 tháng 7 2016 lúc 16:17

thanks bn a

Hoàng Lê Bảo Ngọc
3 tháng 11 2016 lúc 17:44

Mình sẽ làm mẫu cho bạn nhé :)

1. \(\hept{\begin{cases}a^2-2ab+2b^2=1\\a^2+2ab+2b^2=a^4+4b^4\end{cases}}\)

Cộng hai pt trên theo vế : \(2a^2+4b^2=a^4+4b^4+1\)

Đặt \(x=a^2,y=b^2\) (\(x,y\ge0\))

Thì pt trên trở thành \(2x+4y=x^2+4y^2+1\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-4y+1\right)=1\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-1\right)^2=1\)

Vì x,y nguyên nên một trong hai giá trị \(\left(x-1\right)^2\) và \(\left(2y-1\right)^2\) bằng 0 hoặc 1 (cái này bằng 0 thì cái kia bằng 1)

Từ đó suy ra các giá trị x,y

Kim Taehyung
Xem chi tiết
Lê Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 20:11

1: B là số nguyên

=>n-3 thuộc {1;-1;5;-5}

=>n thuộc {4;2;8;-2}

3:

a: -72/90=-4/5
b: 25*11/22*35

\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)

c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)

Ngọc Nguyễn
Xem chi tiết
Đạt Hoàng Minh
28 tháng 7 2016 lúc 17:17

a, \(\frac{2b+1}{10}=\frac{1}{a}\)

  \(\Leftrightarrow\left(2b+1\right)a=10\)

  \(\Leftrightarrow2ab+a=10\)

  \(\Leftrightarrow2ab=10-a\)

  \(\Rightarrow\begin{cases}a=2\\b=2\end{cases}\)

b, \(\frac{a}{4}-\frac{1}{2}=\frac{3}{b}\)

  \(\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)

  \(\Leftrightarrow\left(a-2\right)b=12\)

   \(\Rightarrow a-2=12b\)

   Bạn thế a vô rồi tính b chẳng hạn : \(\begin{cases}a=14\\b=1\end{cases}\)

Nguyễn Kim Ngân
Xem chi tiết
Ánhhhhh
Xem chi tiết
Nguyệt
20 tháng 7 2019 lúc 15:06

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

Nguyệt
20 tháng 7 2019 lúc 15:44

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3