ch tam giác abc gọi m là trung điểm của ab và n là trung điểm của ac .trên tia đối của tia nm lấy d sao cho nm = cd
chứng minh tam giác abc =tam giáccdn tự do suy ra mb =cd
chứng minh mn//bc và mn =một phần 2 bc
Cho tam giác ABC. Gọi M là trung điểm của AB và N là trung điểm của AC. trên tia đối của tia NM, lấy điểm D sao cho NM=ND
a) Chứng minh tam giác AMN= tam giavcs CDN, từ đó suy ra MB=CD
b) Chứng minh MN//BC và MN=1/2 BC
c) Chứng minh BD đi qua trung điểm của đoạn thẳng MC
Bạn tham khảo ở đây
Câu hỏi của Công chúa thủy tề - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC có M là trung điểm của AB và N là trung điểm của AC. Trên tia đối của tia NM lấy điểm G sao cho NM=NG. Chứng minh:
a. Tam giác AMN= tam giác CGN
b. MB song song với NG
c. MN=1/2 BC
Cho tam giác ABC . Gọi M là trung điểm cua AB và N là trung điểm của AC .Trên tia đối của NM , lấy điểm D sao cho NM=ND.
a] chứng minh tam giác AMN= tam giác CDN ,từ đó suy ra MB=CD
b]chứng minh MN//BC
Ta có hình vẽ:
a/ Xét tam giác AMN và tam giác CDN có:
MN = ND (GT)
\(\widehat{ANM}=\widehat{CND}\) (đối đỉnh)
AN = NC (GT)
=> tam giác AMN = tam giác CDN (c.g.c)
Ta có: tam giác AMN = tam giác CDN
=> AM = CD (2 cạnh tương ứng)
Ta có: AM = MB (GT) (1)
Ta có: AM = CD (đã chứng minh trên) (2)
Từ (1), (2) => MB = CD (đpcm)
b/ Ta có: tam giác AMN = tam giác CDN (đã chứng minh trên)
=> \(\widehat{MAN}=\widehat{DCN}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong nên
=> AM // CD
Vì A,M,B thẳng hàng nên MB // CD
=> \(\widehat{BMC}=\widehat{MCD}\) (so le trong) (1)
Ta có: BM = CD (đã chứng minh trên) (2)
MC: cạnh chung (3)
Từ (1),(2),(3) => tam giác BMC = tam giác DMC
=> \(\widehat{DMC}=\widehat{MCB}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> MN // BC (đpcm)
Cho tam giác ABC có AB=AC và AB>BC .M là trung điểm của cạnh BC
1/ Chứng minh tam giác ABM= tam giác ACM vá AM vuông góc với BC
2/ Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD=AE. Chứng minh tam giác AMD = tam giác AME
3/ Gọi N là trung điểm của BD. Trên tia đối tia NM lấy điểm K sao cho NK=NM. Chứng minh 3 điểm D, E, K thẳng hàng
Cho tam giác ABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC.
a. Chứng minh rằng tam giác ABM = tam giác ACM và AM vuông góc với BC
b. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. CHỨNG minh tam giác AMD = tam giác AME
c. Gọi N là trung điểm của đoạn thẳng BD. Trên tia đối của tia NM lấy điểm K sao cho NK = NM. Chứng minh ba điểm D, E ,K thẳng hàng
Cho tam giác ABC có AB=AC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM=AN. Gọi H là trung điểm của BC.
1/ chứng minh: tam giác ABH= tam giác ACH
2/ gọi E là giao điểm của AH và NM. Chứng minh: tam giác AME= tam giác ANE
3/ chứng minh: MM song song BC
Mong m.n giúp đỡ
cho tam giác abc có bc= 6cm và n là trung điểm của AC , M là trung điểm của AB. Qua N kẻ NP // AB ( P thuộc BC) a) Tính độ dài NM và chứng minh tứ giác AMPN là hình bình hành. b)Trên tia đối của tia MP lấy điểm H sao cho M là trung điểm của PH. Chứng minh HB//AP c)Gọi I là trung điểm HB và O là giao điểm của AP và MN Chứng minh I,O,N thẳng hàng
a: Xét ΔABC có
N là trung điểm của AC
M là trung điểm của AB
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}=3\left(cm\right)\)
cho tam giác abc có ab= ac , trên cạnh ab lấy điểm m , trên cạnh ac lấy điểm n sao cho am=an. gọi h là trung điểm của bc
a, chứng minh góc abh = ach
b, gọi e là giao điểm của ah và nm . chứng minh tam giác ame = tam giác ane
c, chứng minh mn // bc
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)