Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn văn Huy
Xem chi tiết
Kỳ Tỉ
Xem chi tiết
Admin (a@olm.vn)
6 tháng 12 2017 lúc 14:50

Bạn tham khảo ở đây

Câu hỏi của Công chúa thủy tề - Toán lớp 7 - Học toán với OnlineMath

Nguyễn Hồng Quân
Xem chi tiết
Nguyễn Khoa
28 tháng 1 2021 lúc 8:51

Sao MB // NG?? 

Phạm Anh Tuấn
Xem chi tiết
Trương Hồng Hạnh
14 tháng 12 2016 lúc 20:36

Ta có hình vẽ:

M N A B C D

a/ Xét tam giác AMN và tam giác CDN có:

MN = ND (GT)

\(\widehat{ANM}=\widehat{CND}\) (đối đỉnh)

AN = NC (GT)

=> tam giác AMN = tam giác CDN (c.g.c)

Ta có: tam giác AMN = tam giác CDN

=> AM = CD (2 cạnh tương ứng)

Ta có: AM = MB (GT) (1)

Ta có: AM = CD (đã chứng minh trên) (2)

Từ (1), (2) => MB = CD (đpcm)

b/ Ta có: tam giác AMN = tam giác CDN (đã chứng minh trên)

=> \(\widehat{MAN}=\widehat{DCN}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong nên

=> AM // CD

Vì A,M,B thẳng hàng nên MB // CD

=> \(\widehat{BMC}=\widehat{MCD}\) (so le trong) (1)

Ta có: BM = CD (đã chứng minh trên) (2)

MC: cạnh chung (3)

Từ (1),(2),(3) => tam giác BMC = tam giác DMC

=> \(\widehat{DMC}=\widehat{MCB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> MN // BC (đpcm)

nguyen thu huong
Xem chi tiết
Đỗ Thụy Cát Tường
Xem chi tiết
Nguyễn Phương Thy
Xem chi tiết
Nguyễn acc 2
12 tháng 3 2022 lúc 11:43

undefined

Tùng Nguyên Nguyễn Đình
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 21:32

a: Xét ΔABC có

N là trung điểm của AC

M là trung điểm của AB

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}=3\left(cm\right)\)

Bùi Thị Minh Phương
Xem chi tiết
Bùi Thị Minh Phương
2 tháng 7 2021 lúc 10:07

giúp mình bài này với 

 

Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 10:09

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{ABH}=\widehat{ACH}\)

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAE}=\widehat{NAE}\)

Xét ΔAME và ΔANE có 

AM=AN(gt)

\(\widehat{MAE}=\widehat{NAE}\)(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)

mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)

nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥MN tại E(1)

Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)