Cho n ∈ N. Chứng minh rằng:
a) 5n+2 + 26.5n + 82n+1 ⋮ 59.
b) ( 42n - 32n - 7 ) ⋮ 168 ( n ≥ 1 ).
1)CMR: với mọi số tự nhiên n thì : A=5n+2+26.5n+82n+1
2) Với x \(\ge\) 0. Tìm GTNN của bt
a)P=\(\dfrac{\left(x+2\right)^2}{2x}\)
b)Q=\(\dfrac{\left(x+1\right)^2}{y}+\dfrac{4y}{x}\) với x>0,y>0
\(1,A=5^{n+2}+26\cdot5^n+8^{2n+1}\\ A=5^n\cdot25+26\cdot5^n+8\cdot8^{2n+1}\\ A=51\cdot5^n+8\cdot64^n\)
Ta có \(64:59R5\Rightarrow64^n:59R5\)
Vì vậy \(51\cdot5^n+8\cdot64^n:59R=5^n\cdot51+8\cdot5^n=5^n\left(51+8\right)=5^n\cdot59⋮59\)
Vậy \(A⋮59\)
(\(R\) là dư)
\(2,\\ a,2x\ge0;\left(x+2\right)^2\ge0,\forall x\\ \Leftrightarrow P=\dfrac{\left(x+2\right)^2}{2x}\ge0\\ P_{min}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Những hằng đẳng thức đáng nhớ (Tiếp 2)
bài 1 cho a+b=1. tính gái trị M = 2(a3+b3) - 3(a3+b3)
bài 2 với n là số tự nhiên cmr
a,11n+2+122n+1(chia hết 133)
b, 5n+2+26.5n+82n+1 (chia hết cho 59)
giúp mình vói mình đang cần gấp
Chứng minh rằng a, 3 2 n + 1 + 2 n + 2 32n+1+2n+2 chia hết cho 7
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Chứng minh rằng:
nếu 1 số chia hết cho 7n+10 và 5n+7 thì cũng chia hết cho 32n2+99n+70
chứng minh rằng:
(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2) +4 chia hết cho 5, với mọi n
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
Chứng minh rằng với n N thì hai số sau nguyên tố cùng nhau:
a) 5n + 2 và 2n + 1 b) 7n + 10 và 5n + 7 c) 2n + 1 và 2n + 3 c) 3n + 1 và 5n + 2
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)
\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)
d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)
cứu em vs=<
chứng minh rằng b=(n^2-n) (n+1) b chia hết cho 6
c=5n^2+5n;c chia hết cho 10
\(b=\left(n^2-n\right)\left(n+1\right)\)
\(=\left(n\cdot n-n\cdot1\right)\left(n+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!\)
=>b chia hết cho 6
\(c=5n^2+5n\)
\(=5n\cdot n+5n\cdot1\)
\(=5n\left(n+1\right)\)
n;n+1 là hai số nguyên liên tiếp
=>\(n\left(n+1\right)⋮2\)
=>\(c=5\cdot n\cdot\left(n+1\right)⋮5\cdot2=10\)