Cho D = 1/1.2.3+1/2.3.4+....+1/37.38.39
1\1.2.3+1\2.3.4+..................+1\37.38.39=
1\1.2.3+1\2.3.4+..................+1\37.38.39= Ko tính được
duyệt đi
ví dụ 108 trang 16 . nâng cao và phát triển 6 tập 2 nha . chúng mình kết bạn nha
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{36.37.38}+\frac{1}{37.38.39}\)
\(\Rightarrow A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(\Rightarrow A=\frac{1}{1.2}-\frac{1}{38.39}=\frac{1}{2}-\frac{1}{1482}=\frac{741}{1482}-\frac{1}{1482}=\frac{740}{1482}=\frac{370}{741}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.....+\dfrac{1}{37.38.39}\)
Lời giải:
Đặt biểu thức trên là $A$.
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38.39}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)
\(\Rightarrow A=\frac{185}{741}\)
1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39
= 1 . 1/2 . 1/3 + 1/2 . 1/3 . 1/4 + ... + 1/37 . 1/38 . 1/39
= 1 . 1/39
= 1/39
Mong moi nguoi chi them03
1/1.2.3+1/2.3.4+1/3.4.5+.....+1/37.38.39
1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39
= 1/2.(1/1.2-1/2.3)+1/2.(1/2.3-1/3.4)+...+1/2.(1/37.38-1/38.39)
= 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/37.38-1/38.39)
= 1/2.(1/1.2-1/38.39)
= 1/2.370/741
= 185/741
1/1.2.3+1/2.3.4+1/3.4.5+....+1/37.38.39 = ?
Ta có
1/(1.2.3) = 1/2.(1/(1.2) - 1/(2.3))
1/(2.3.4) = 1/2.(1/(2.3) - 1/(3.4))
1/(3.4.5) = 1/2.(1/(3.4) - 1/(4.5))
.........
.........
1/( 37.38.39) = 1/2.((1/(37.38) - 1/(38.39))
Cộng vế với vế các đẳng thức trên ta được.
1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + ......1/(37.38) - 1/(38.39)
=> 1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(38.39)) = 185/74
Đ/S:tích
1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39
Ta có
1/(1.2.3) = 1/2.(1/(1.2) - 1/(2.3))
1/(2.3.4) = 1/2.(1/(2.3) - 1/(3.4))
1/(3.4.5) = 1/2.(1/(3.4) - 1/(4.5))
.........
.........
1/( 37.38.39) = 1/2.((1/(37.38) - 1/(38.39))
Cộng vế với vế các đẳng thức trên ta được.
1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + ......1/(37.38) - 1/(38.39)
=> 1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(38.39)) = 185/74
1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39
1-1/3+1/3-1/5+1/5-1/7+.......+1/37-1/39
1-1/39
38/39
A= 1/ 1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/36.37.38 + 1/ 37.38.39
Lời giải:
\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{38-36}{36.37.38}+.\frac{39-37}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{36.37}-\frac{1}{37.38}+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)
Tính A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{37.38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1482}\right)\)
\(A=\dfrac{1}{2}.\dfrac{370}{741}=\dfrac{185}{741}\)