1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39
= 1/2.(1/1.2-1/2.3)+1/2.(1/2.3-1/3.4)+...+1/2.(1/37.38-1/38.39)
= 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/37.38-1/38.39)
= 1/2.(1/1.2-1/38.39)
= 1/2.370/741
= 185/741
1/1.2.3+1/2.3.4+1/3.4.5+...+1/37.38.39
= 1/2.(1/1.2-1/2.3)+1/2.(1/2.3-1/3.4)+...+1/2.(1/37.38-1/38.39)
= 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/37.38-1/38.39)
= 1/2.(1/1.2-1/38.39)
= 1/2.370/741
= 185/741
A= 1+1/1.2 + 1/1.2.3 +......+1/1.2.3.n <1+1/1.2 +1/1.3+......+1/k(k+1)
A=1+1/1.2+1+1/1.2.3+.......+1/1.2.3.n < 1+1/1.2+1/2.3+.......+1/k(k+1)
Tính giá trị của tổng sau đây:
S= 1.2.3+2.3.5+3.5.7+...+50.51.101
a,(1-1/2).(1-1/3).(1-1/4).........(1-1/n)
b,(1+1/2).(1+1/3).(1+1/4)..........(1+1/n)
c,(1-1/2^2).(1-1/3^2).(1-1/4^2)..........(1-1/n^2)
d,(1+1/1.3).(1+1/2.4).......(1+1/99.101)
b1 :tính
a) N = (1/2 - 1). (1/3 - 1). (1/4 - 1) .... (1/2016 - 1). (1/2017 - 1)
b) P = (-1/1/2). (-1/1/3). (-1/1/4) ... (-1/1/2015). (2016/01/01)
c) Q = 1/13 + 3 / 13,23 + 3 / 23,33 + ... + 3 / 2013,2023
d) R = 1 / 2.017,2016-1 / 2.016,2015-1 / 2015,2014 - ... -. 1 / (x + 1999) (x + 2000)
b2 : tìm x, biết :
a) 1 / (x + 1). (x + 2) + 1 / (x + 2). (x + 3) + 1 / (x + 3). (x + 4) + ... + 1 / (x + 1999). (x + 2000) = 1 / x + 200 = 1/5
b) 2 / (x + 1). (x + 3) + 3 / (x + 3). (x + 6) + 4 / (x + 6). (x + 10) + ... + 10 / (x + 45). (x + 55) + 1 / x + 55 = 1/6
( chú ý : / là phần nha )
(-1 1/2).(-1 1/3).(-1 1/4).....(-1 1/100)
Cho: A=1-1/2+1/3-1/4+...-1/2018+1/2019
B=1/1010+1/1011+...+1/2018+1/2019
Tính (A-B)2020
A= \(\left(\dfrac{1}{2}-1\right)\)\(\left(\dfrac{1}{3}-1\right)\).........\(\left(\dfrac{1}{10}-1\right)\). So sánh A với \(\dfrac{-1}{9}\)
B= \(\left(\dfrac{1}{4}-1\right)\)\(\left(\dfrac{1}{9}-1\right)\)...........\(\left(\dfrac{1}{100}-1\right)\). So sánh B với \(\dfrac{-11}{21}\)
Cho A=(1-1/1+2)(1-1/1+2+3)(1-1/1+2+3+4)...(1-1/1+2+3+..+n) là tích của n-1 thừ số và B=n+2/n . Tính A/B