cho tam giác ABC vuông tại A,có I là trung điểm AC.Kẻ \(ID\perp BC\).Chứng minh:\(^{AB^2=BD^2-CD^2}\)
tam giác ABC vuông tại A(AC<AB). I là trung điểm của AC, ID vuông BC chứng minh BD^2-CD^2=AB^2
Bài 1:Cho tam giác ABC vuông tại A có AM là đường trung tuyến.Gọi N là trung điểm của AC
1)Chứng minh \(MN\perp AC\)
2)Tam giác AMC là tam giác gì?Vì sao?
3)Chứng minh 2AM=BC
Bài 2:Cho tam giác ABC nhọn có 2 đường cao BD và CE.Gọi M,N là trung điểm của BC và DE
1)Chứng minh \(DM=\dfrac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN \(\perp\) DE
Bài 3:Cho tam giác ABC trên AC lấy theo thứ tự điểm D và E sao cho AD=DE=EC.Gọi M là trung điểm của BC,BD cắt AM tại I
1)Chứng minh ME//BD
2)Chứng minh I là trung điểm của AM
3)Chứng minh ID=\(\dfrac{1}{4}\) BD
Bài 4:Cho tam giác ABC có AM là trung tuyến.Lấy D thuộc AC sao cho \(AD=\dfrac{1}{2}DC\).Kẻ ME//BD (E thuộc CD), BD cắt AM tại I
1)Chứng minh AD=DE=EC
2)Chứng minh I là trung điểm AM
Cho tam giác ABC vuông tại A, M là trung điểm của AC, kẻ \(MD\perp BC\). Chứng minh: \(AB^2=BD^2-CD^2\)
Cho tam giác ABC có M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt cạnh AB tại D. Chứng minh
a) AD = 1/2 BD
b) ID = 1/4 CD
Cho tam giác ABC ,M là trung điểm BC, I là trung điểm AM. CI giao AB tại D. Chứng minh :
a/AD=1/2 *BD
b/ID=1/4*CD
cho tam giác abc vuông tại a, m là trung điểm của ac. vẽ md vuông góc với bc. chứng minh ab^2 =bd^2- cd^2
Ta có : \(BD^2-CD^2=\left(MB^2-MD^2\right)-\left(MC^2-MD^2\right)=MB^2-MC^2=MB^2-MA^2=AB^2\) ( Vì MA = MB)
Vậy \(AB^2=BD^2-CD^2\)
Ta có : 2MC = AC(Vì M là trung điểm của AC)
=> 2MC.AC =AC2
Ta có ; Tam giác MDC đồng dạng tam giác BAC nên
(MC/BC) = (DC/AC)
=> MC.AC = BC.DC
=> 2.MC.AC = 2BC.Dc
=> ac2 = 2BC.DC
=> BC 2 - AC 2 = BC 2 - 2Bc - dc
=> AB2 = BC.(BC - CD - CD ) = Bc . (BD-Dc) = (BD +DC) .(BD - CD)
=> AB2 = BD2 - CD2 (ĐPCM)
Mk ko biết vẽ hình đâu nên mong bạn thứ lỗi
cho tam giác ABC vuông tại A có I là trung điểm của AC.Vẽ ID vuông góc vs cạnh huyền BC
CM \(AB^2=BD^2-CD^2\)
Cho tam giác ABC vuông tại A có I là trung điểm của AC. Vẽ ID vuông góc với
cạnh huyền BC, (De BC).
a)Chứng minh AB2 = BD? _ CD2
b) Biết AB = 6cm; AC = 8cm. Em hãy giải tam giác vuông ABC
Nối B vs I. Xét tam giác BID vuông tại D, có:
BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:
DC2 = IC2 - ID2 (2).Từ (1) và (2) =>
=> BD2 - DC2
= BI2 - ID2 - IC2 + ID2
= BI2 - IC2
= BI2 - AI2 (vì AM=CM)
= AB2=> AB2 = BD2 - DC2 (đpcm)
a: \(BD^2-CD^2\)
\(=BI^2-ID^2-CI^2+ID^2=BI^2-CI^2=BI^2-AI^2=BA^2\)
b: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
sin B=AC/BC=4/5
=>góc B=53 độ
=>góc C=37 độ
cho tam giác ABC vuông tại A có AB<AC.Kẻ đường cao AH.
a) chứng minh tam giác HAC và tam giác ABC đồng dạng
b)Chứng minh AH^2=HB.HC
c)Gọi D;E lần lượt là trung điểm của AB;BC.cHỨNG TỎ RẰNG CH.CB=4DE^2