Cho DABC vuông tại A, AH là đường cao. Gọi D, E lần lượt là hình chiếu vuông góc của H trên AB, AC.
a) Chứng minh: ∆ABH ∆CAH.
b) Chứng minh: AD.AB = AE.AC = AH2
c) Chứng minh đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE.
1) Cho tam giác ABC vuông tại A , AB < AC , đường phân giác AD . Đường vuông góc với DC tại D cắt AC ở E . Chứng minh rằng:
a) Tam giác ABC và tam giác DEC đồng dạng
b) DE=BC
Cho tam giác ABC vuông tại A có AB=6 cm, AC=8 cm.Kẻ đường cao AH a) Chứng minh ABC ~ HBA từ đó suy ra AH.BC=AB.AC b)Gọi M,N lần lượt là hình chiếu của H trên AB,AC. Chứng minh AMH~ AHB c) Chứng minh AM.MB=MH^2 d) Chứng minh AMN~ACB e) Chứng minh S amn/S acb= AH^2/BC^2 Vẽ hình gt đầy đủ nhaa:3
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC(AB<AC) có đường cao AH . Gọi I là trung điểm của AC .Kẻ IN vuông góc với BC(N thuộc BC) . a) Chứng minh tam giác ABC đồng dạng với tam giác NIC và CA.CI=CB.CN . b) Chúng minh AB2=BH.BC=NB2-NC2
Cho tam giác ABC vuông tại A , đg cao AH a) cm tam giác AHB đồng dạng với tam giác CAB . Và AH.CB=AB.AC b) Gọi D, E lần lượt là hình chiếu của H trên Ab , AC .Tứ giác DEHA là hình gì?Vì sao??? c) Cho AB=9cm , AC=12cm . tính DE d) cm : AH^2 = DA.DB+EA.EC
cho tam giác ABC vuông tại A,đường cao AH.
a. CM tam giác ABH đồng dạng với tam giác CBA
b.Gọi E là điểm tùy ý trên cạnh AB, ĐƯờng thẳng đi qua H và vuông góc với HEcawts AC tại F. Tìm vị trí của điểm E trên cạnh AB để tam giác EHFcó diện tích nhỏ nhất
Cho tam giác ABC vuông tại A có AH là đường cao.AB=15 AH=12
a) CM tam giác AHB đồng dạng tam giác CHA
b)Tính BH,HC,AC
c)Vẽ AM là tia phân giác góc BAC. Tính BM
d) Lấy E trên AC sao cho HE song song AB. Gọi N là trung điểm của AB,CN cắt nhau tại I. Chứng minh I là trung điểm của HE