\(\frac{5^{^2}\cdot6^{11}\cdot\left(-16\right)^2+6^2\cdot\left(-12\right)^6\cdot\left(-15\right)^2}{2\cdot\left(-6\right)^{12}\cdot10^4-81^{2\cdot960^3}}\)
Tính hộ mình với
Tính
A= \(\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)\cdot\cdot\cdot\cdot\cdot\left(\frac{3^{2015}}{2018}-81\right)\)
giúp mình với nha mình đang vội
CHo `M` `=` \(\dfrac{\left(\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+\dfrac{3}{4\cdot10}+...+\dfrac{3}{49\cdot100}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{100}\right)}\)
Chứng `M` có giá trị là 1 số nguyên
Hép - mi - pờ - li
Tính :
\(A=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)\cdot\left(\frac{3^3}{6}-81\right)\cdot.....\cdot\left(\frac{3^{2013}}{2016}-81\right)\)
Ta có
\(A=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)...\left(\frac{3^6}{9}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)...\left(\frac{729}{9}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)=0\)
vì 729/9=81
Vậy A=0
k me đi
\(\left(\frac{3}{4}-81\right).\left(\frac{3^2}{5}-81\right).\left(\frac{3^3}{6}-81\right).\left(\frac{3^4}{7}-81\right).\left(\frac{3^5}{8}-81\right).\left(\frac{729}{9}-81\right)....\left(\frac{3^{2013}}{2016}-81\right)\)
=>....................................................................................................................(81-81)..............................................
=>.....................................................................................................................0.....................................................
=>A=0
\(\left[6\cdot\left(-\frac{1}{3}\right)^2-3\cdot\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)
\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)
\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)
~ Hok tốt ~
\(\left[6\cdot\left(-\frac{1}{3}\right)^2-3\cdot\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(=\left[6\cdot\left(-\frac{1}{9}\right)+1+1\right]:\left(-\frac{4}{3}\right)\)
\(=\left(-\frac{2}{3}+2\right):\left(-\frac{4}{3}\right)\)
\(=\frac{4}{3}:\left(-\frac{4}{3}\right)=-1\)
Chứng minh rằng với số nguyên dương \(n\ge6\) thì số
\(a_n=1+\dfrac{2\cdot6\cdot10\cdot\cdot\cdot\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)\cdot\cdot\cdot\left(2n\right)}\) là số chính phương
Giá trị của biểu thức: (\(\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)\cdot\left(\frac{3^3}{6}-81\right)\cdot...\cdot\left(\frac{3^{2011}}{2014}-81\right)\) bằng.....
Giải chi tiết hộ nha
Tính:
\(-3^2+\left\{-54:\left[-2^8+7\right]\cdot\left(-2\right)^2\right\}\)
Tính hợp lí :
\(31\cdot\left(-18\right)+31\cdot\left(-81\right)-31\)
\(\left(-12\right)\cdot47+\left(-12\right)\cdot52+\left(-12\right)\)
\(13\cdot\left(23+22\right)-3\cdot\left(17+28\right)\)
\(-48+48\cdot\left(-78\right)+48\cdot\left(-21\right)\)
`#3107.101107`
`-3^2 + {-54 \div [-2^8 + 7] * (-2)^2}`
`= -9 + [-54 \div (-256 + 7) * 4]`
`= -9 + [-54 \div (-249) * 4]`
`= -9 + (18/83 * 4)`
`= -9 + 72/83`
`= -675/83`
______
`31 * (-18) + 31 * (-81) - 31`
`= 31 * (-18 - 81 - 1)`
`= 31 * (-100)`
`= -3100`
___
`(-12) * 47 + (-12) * 52 + (-12)`
`= (-12) * (47 + 52 + 1)`
`= (-12) * 100`
`= -1200`
___
`13 * (23 + 22) - 3 * (17 + 28)`
`= 13 * 45 - 3 * 45`
`= 45 * (13 - 3)`
`= 45 * 10`
`= 450`
____
`-48 + 48 * (-78) + 48 * (-21)`
`= 48 * (-1 - 78 - 21)`
`= 48 * (-100)`
`= -4800`
\(a.A=[\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}]+\frac{1890}{2005}+115\)
b.B=\(\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\cdot\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(42-5\frac{1}{3}\right)}\cdot\left(-1\frac{19}{93}\right)\right]\cdot\frac{31}{50}\)
TÍNH
\(C=\left(1+\frac{2}{3}\right)\cdot\left(1+\frac{2}{5}\right)\cdot\left(1+\frac{2}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1+\frac{2}{2015}\right)\cdot\left(1+\frac{2}{2017}\right)\)
\(D=\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{6}\right)\cdot\left(1-\frac{1}{10}\right)\cdot\left(1-\frac{1}{15}\right)\cdot\cdot\cdot\cdot\left(1-\frac{1}{780}\right)\)
\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)
\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)
Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:
\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)
\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)