Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 22:44

Hệ thức lượng: \(AH^2=BH.CH\)

Hai tam giác vuông BEH và HFC đồng dạng: \(\Rightarrow\dfrac{BE}{FH}=\dfrac{EH}{CF}\Rightarrow BE.CF=EH.FH\)

Hai tam giác vuông AEH và CFH đồng dạng \(\Rightarrow\dfrac{AH}{CH}=\dfrac{EH}{FH}\Rightarrow AH.FH-CH.EH=0\)

 Hai tam giác vuông BEH và AFH đồng dạng \(\Rightarrow\dfrac{BH}{AH}=\dfrac{EH}{FH}\Rightarrow EH.AH-BH.FH=0\)

Ta có: \(\left(BE\sqrt{CH}+CF\sqrt{BH}\right)^2=BE^2.CH+CF^2.BH+2BE.CF.\sqrt{BH.CH}\)

\(=BE^2.CH+CF^2.BH+2BE.CF.AH\)

\(=\left(BH^2-EH^2\right)CH+\left(CH^2-FH^2\right)BH+2BE.CF.AH\)

\(=BH.CH\left(BH+CH\right)-EH^2.CH-FH^2.BH+2EH.FH.AH\)

\(=AH^2.BC+EH\left(AH.FH-EH.CH\right)+FH\left(AH.EH-FH.BH\right)\)

\(=AH^2.BC=\left(AH\sqrt{BC}\right)^2\)

\(\Rightarrow BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 22:45

undefined

Nguyễn Mai
Xem chi tiết
Triệu Ngân Hà
31 tháng 5 2020 lúc 23:32

câu b làm kiểu gì vậy ạ?

Khách vãng lai đã xóa
Nguyễn Mai
3 tháng 6 2020 lúc 20:16

Câu b: Tam giác AHB vuông tại H, đường cao AH

=> AD.BD=DH2

Tương tự: AE.EC=HE2

=> AD.BD+AE.EC=DH2+HE2

=DE2 (Pytago)

=AH2 (ADHE là hình chữ nhật vì có 3 góc vuông)

Khách vãng lai đã xóa
Nguyên Miou
Xem chi tiết
Sofia Nàng
Xem chi tiết
Trần Bảo Hân
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Nguyễn Duyên
Xem chi tiết
Quỳnh Nhi Hoàng Thi
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết